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CHAPTER 1  INTRODUCTION AND REVIEW 

Portions of the text in this chapter were reprinted or adapted with permission from: 

Nat. Chem. Biol., 13, 181 (2017), Theor. Chem. Acc., 134, 101:1 (2015) and J. Phys. 

Chem. B., 118, 7156 (2014). All rights to the work are retained by the authors and any 

reuse requires permission of the authors. 

Computer simulations have become a powerful tool to study chemical and biological 

problems. This thesis will cover both development and application of theoretical methods 

for the computational simulations of condensed and biological systems. Force field 

development using distributed multipoles derived from the Gaussian Electrostatic Model 

(GEM) and its amenability for use in the AMOEBA force field will be discussed here. 

Molecular Dynamics (MD) simulations and Quantum Mechanical/Molecular Mechanical 

(QM/MM) are used to study energetics, structural and thermodynamic properties as well 

as the reaction mechanism pathways for these systems. This thesis describes various 

types of studies carried out on the Fe(II)/α-ketoglutarate(α-KG)-dependent family of 

dioxygenases (TET2 and AlkB) as well as water, imidazolium- and pyrrolidinium-based 

ionic liquids. This chapter gives a brief introduction to each system in terms of the 

literature review and the goal of the research for each studied system. 

Chapter 2 and 3 focus on TET2 demethylation activity using MD and QM/MM 

studies. Chapter 4 describes the intermolecular tunnels for the oxygen transport within 

AlkB. The force field development, MD simulations and properties calculations of ionic 

liquids and water are covered in chapters 5, 6 and 7. A brief conclusion is provided in 

Chapter 8. 
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1.1  MD and QM/MM studies on Fe(II)/α-KG-dependent enzymes 

1.1.1  TET family enzyme  

The discovery of ten-eleven translocation (TET) enzymes transformed the known 

repertoire of epigenetic DNA modifications.1 TET enzymes catalyze the oxidation of 5-

methylcytosine (mC), the mainstay of the epigenome, into three additional bases: 5-

hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC).1-6 

Mounting evidence suggests that these oxidized mC (ox-mC) bases stably populate 

mammalian genomes, aid in DNA demethylation, and potentially encode unique 

epigenetic information.7-10 The central questions now facing the field involve the 

functions of each individual base and the mechanisms governing their formation. 

The overall catalytic mechanism of TET enzymes (TET1–3 in mammals) has been 

largely inferred from related proteins in the Fe(II)/α-KG-dependent family of 

dioxygenases, such as AlkB.11 Enzymes in this family couple decarboxylation of α-KG 

with substrate oxidation via a transient Fe(IV)-oxo intermediate, with succinate and CO2 

as byproducts. TET enzymes apply this general mechanism to not one but three stepwise 

reactions, raising the question of whether these enzymes are specialized for one particular 

step of oxidation, or for three-step oxidation as a whole. Moreover, stepwise oxidation 

obscures the function of individual ox-mC’s, creating a need to break the linkage between 

steps in order to study each base in isolation. The first step of oxidation, conversion of 

mC to hmC, has so far drawn the most attention, as it best explains the physiological 

levels of cytosine modifications: in the human genome, mC accounts for approximately 

0.6-1% of all bases, hmC is typically 1–5% of mC, and fC and caC are at least 1–2 orders 
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of magnitude rarer than hmC.9 Consistent with these observations, biochemical studies 

have shown that mC substrate is preferred over hmC and fC, with 2- to 5-fold differences 

in KM and Kreact reported for human TET2.12 Crystal structures did not reveal substrate-

specific interactions that could explain these differences,12-13 but computational modeling 

suggested that hydrogen abstraction is more efficient on mC than on hmC and fC, which 

adopt unfavorable conformations.12, 14 Together, these studies portray TET enzymes as 

predominantly serving to generate hmC; in this case, decreased capacity for further 

oxidation would help to maintain stable levels of hmC for epigenetic functions. Indeed, 

most functional studies on ox-mC bases have focused on hmC in health and disease, with 

fC/caC considered as fairly negligible. However, this view does not explain why fC and 

caC are present at all, and it contrasts with evidence for the importance of higher-order 

oxidation. Apart from being intermediates in demethylation, fC/caC potentially also 

function as stable epigenetic marks. Genomic sequencing has mapped fC/caC to gene 

regulatory regions separate from hmC.9 Biochemically, mouse TET2 is capable of 

iterative oxidation; it can catalyze multiple rounds of oxidation upon a single encounter 

with mC, without releasing the hmC-containing DNA strand.15 Although the prevalence 

of genomic hmC implies that most encounters are not iterative, this mechanism could 

allow TET enzymes to generate fC and caC marks without first accumulating hmC. 

Together, these studies encourage the alternate view that TET enzymes are specialized 

for making not only hmC but fC and caC as well, even that conversion of hmC to fC 

could be the key “committed” step to DNA demethylation. To resolve these competing 

views of TET function, one question comes to the fore: whether TET  enzymes are 
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adapted to facilitate higher-order oxidation. The mC-to-hmC step is most favored, but if 

fC and caC serve important functions, mechanisms should be in place to permit their 

formation, yet these mechanisms remain largely unknown. They could be extrinsic to 

TET, e.g. other proteins could recruit TET enzymes or regulate their activity. However, 

intrinsic features, especially structure-function support for higher-order oxidation, would 

suggest an enzyme specifically shaped to generate not one but three epigenetic bases and 

would add value to stalling the hmC-to-fC reaction in particular, to test whether it is 

indeed a key transition. 

 We examined the active site of human TET2 for potential structure-function 

determinants of stepwise oxidation. The target nucleobase is everted out of the DNA 

duplex and occupies a tunnel-like space in the active site, with the 5-modified group 

pointing toward the α-KG analogue and Fe(II) (Figure 1.1). Although the residues that 

form this tunnel have no obvious interaction with the 5-modified groups.12-13 We 

hypothesized that they could impact the progress of stepwise oxidation by hydrogen 

bonding or steric interactions. Our collaborators targeted the one conserved residue 

located closest to the 5-methyl group, Thr1372 (Figure 1.1). By substituting all 20 amino 

acids at these positions, Thr1372, they uncovered a relationship between the side chain 

properties and stepwise oxidation activity, including variants that stall oxidation at hmC, 

with little to no fC/caC formed. Molecular dynamics simulations, coupled with 

biochemical analyses, revealed that a conserved Thr1372-Tyr1902 active site scaffold is 

required for efficient fC/caC formation, providing the first evidence that wild type TET2 

is specifically shaped to enable higher-order oxidation. We further show that mutations 
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along this core scaffold can reconfigure active site interactions to stall oxidation at hmC, 

which opens opportunities to test the importance of hmC versus fC/caC in biological and 

pathological systems. Combined biochemical and computational methods are applied to 

elucidate an active site scaffold that is required for wild type stepwise oxidation and that, 

when perturbed, explains the mutants’ “hmC-stalling” phenotype. We present the 

computational methods, analyses and results along with some experimental results in 

Chapter 2. Our results suggest that the TET2 active site is shaped to enable higher-order 

oxidation and provide the first TET variants that could be used to probe the biological 

functions of hmC separately from fC and caC. 

 

Figure 1.1 Structure of the hTET2-CS active site highlighting the targets for mutagenesis, 
Thr1372. 

In Chapter 3, we turn our focus to the ab initio QM/MM study of the oxidation of 

5hmC to 5fC to complement our MD studies and to investigate the source of the substrate 

preference in the wild type. As we discussed above, our MD results revealed that the 

active site of TET2 is shaped to enable higher-order oxidation states of the substrate.16 

This study provides a qualitative image of the stepwise oxidation path in TET2. 

However, it raises new questions such as whether oxidation of 5hmC to 5fC is kinetically 
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favorable. To gain further insight into the oxidation of 5hmC to 5fC, we performed a 

hybrid quantum mechanical/molecular mechanical (QM/MM) studies on wild type TET2 

and T1372E mutant as an example of “hmC-stalling" mutants.  

1.1.2  AlkB family enzyme 

E. coli AlkB is an Fe(II)/α-KG dependent enzyme that repairs alkylated DNA and 

RNA bases by catalyzing an oxidative dealkylation mechanism.11,17-18 The oxidative 

dealkylation mechanism catalyzed by AlkB, has been investigated extensively.19-31 The 

reaction mechanism can be separated into two stages. The first stage involves the 

formation of a ferryl (Fe(IV)-oxo) intermediate, followed by the oxidation of the alkyl 

moiety on the damaged base. To initiate the oxidation of Fe, an O2 molecule needs to 

displace a water molecule from the primary coordination sphere of Fe. The diffusion of 

O2 into the active site is an essential process in this mechanism. 

A key question in this first stage of the reaction is how O2 molecules are transported 

into the active site. Various enzymes that use molecular Oxygen have been shown to 

employ transient intra-molecular tunnels formed by flexible hydrophobic residues to 

transport O2 from the surface of the protein to the active site.32-35 

A number of computational studies have been reported on the diffusion of O2 through 

intra-molecular tunnels.35-42 One possible approach to investigate the transport of these 

types of molecules involves standard MD simulation of ligand diffusion, which ideally 

requires a large number of independent replicate runs of several ns to attain adequate 

sampling (flooding simulation).32,35
  A second approach involves the determination of the 

potential of mean force (PMF).35 43
  Extensive sampling is essential to obtain accurate 
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PMFs since incomplete sampling can result in large errors in the calculated barriers. In 

recent years, GPU computing has resulted in a large increase in the timescales of MD 

simulations, which make it possible to perform the sufficient sampling that is necessary 

to achieve a realistic description of ligand diffusion.39, 44 

Yu et al. proposed the possibility of O2  transport through an intra-molecular tunnel in 

AlkB based on the first AlkB crystal structures.45 They showed that there is little 

unoccupied volume in the binding cavity, in which the target base directly contacts its 

molecular surface. This study portrays open and closed states of a tunnel putatively 

gating O2 diffusion into the active site in the presence of iron(II) and cobalt(II), 

respectively. The open and closed states of this tunnel are due to the structural variation 

of the side chain of residue W178, which is located at the entrance of a binding cavity.46 

Based on these observations, we present results from various computational 

approaches to determine the likelihood of the existence of this putative intra-molecular 

tunnel, and whether it is amenable for the passive transport of O2 into the active sit of 

AlkB. In addition, given that molecular oxygen is a neutral albeit highly polarizable 

molecule, we have employed both non–polarizable fixed-charge (AMBER) and 

multipolar/polarizable (AMOEBA) potentials to investigate the role of electronic 

polarization. Explicit simulations on three W178 mutants have also been performed to 

investigate the role of this particular residue on AlkB structure and the structure of the 

tunnel. In Chapter 4, I present the details for the various methods employed to simulate 

the transport of the substrate, calculate the energy for this transport along the tunnels, and 
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various analysis. Subsequently, the results and discussion for the calculated tunnels and 

transport/energetics are described in this chapter, followed by concluding remarks. 

1.2  AMOEBA/GEM force field development 

1.2.1  Immidazolium-based ionic liquids 

The first ionic liquids (ILs) were introduced in the 1950s, with a significant increase 

in interest in the 1980s.47 Room temperature ionic liquids (RTILs) are organic salts with 

melting points below room temperature. Ionic liquids are a combination of asymmetric 

organic and inorganic ions that stay in a liquid phase over a wide temperature range. 

These ionic liquids are usually composed of organic cations and inorganic anions. The 

most studied are imidazolium+, pyridinium+, and pyrrolidinium+ based cations in a 

combination with a broad number of anions. These cations are relatively easy to 

functionalize, and various types of side groups can be attached to obtain particular ionic 

liquid properties. Thermodynamic properties such as low vapor pressure, excellent 

thermal and electrochemical stability, and good solvation properties make ionic liquids 

attractive for a wide range of applications. Practical applications can include materials for 

electrodeposition,48 battery electrolytes,49 and applications for catalysis.50 The desired 

properties can be achieved by choosing a particular cation/anion combination. Therefore, 

there is an essential need to determine the physical and chemical properties of ILs in 

order to optimize their usage. There are a large number of cation/anion combinations, 

which makes experimental determination of properties an expensive and time-consuming 

process.51 Thus, molecular modeling has become a powerful tool to predict ionic liquid 

properties without conducting an experiment. It is also practical to carry out molecular 
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dynamics simulations to get some fundamental understanding on ionic liquids’ behavior 

and to improve predictive capabilities of computational models. However, accurate 

simulations are needed to facilitate investigations of ionic liquids. There have been many 

computational studies performed to model and simulate a wide range of ionic liquids.52-61  

A systematic improvement of the force fields for molecular dynamics simulations of 

various compounds is a viable process, since molecular dynamics simulations are 

becoming an essential tool for scientific research and investigations. A broad variety of 

molecular dynamics simulation packages are available for researchers.62-67 However, 

predictive capabilities of that software mostly depend on the quality of the employed 

force fields. Most conventional force fields for ILs use partial atomic charges to describe 

the electrostatic interactions of molecules. A number of non-polarizable68-71 and 

polarizable72-74 force fields that are based on partial atomic charges have been 

successfully developed and employed for the simulation of various compounds. Despite 

the good agreement with the experiment for a number of properties, those force fields 

show some inaccuracies for certain cases and do not fully account for the anisotropy of 

the electrostatic interactions or for the charge density penetration effects.75 

In order to improve the description of electrostatic interactions, higher order 

multipoles can be employed. The gaussian electrostatic model (GEM)76-77 uses Hermite 

Gaussians to describe the molecular charge density. In addition, we have shown recently 

that it is possible to obtain distributed multipoles, which we call GEM-DM multipoles, to 

describe electrostatic interactions in the atomic multipole optimized energetics for 

biomolecular applications (AMOEBA) potential.78-79 Several force fields have been 
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developed using the distributed multipole approach.80-82 The advantage of distributed 

multipoles over partial atomic charges is that point multipoles provide a better description 

of the charge density anisotropy, compared with point charge models.83-84 However, these 

models do not account for the charge penetration effects at short interatomic distances.85 

One way to take into account anisotropy of electrostatic interactions and charge 

penetration effects is to employ damping functions.86-88 An alternative is to use a 

continuous description of the molecular charge densities. Recently, a continuous 

description of the charge densities was successfully implemented for molecular dynamics 

simulations of water.89 

 In Chapter 5, we present the development of the multipolar/polarizable AMOEBA 

force field for 1,3-dimethylimidazolium based ILs using GEM-DM multipoles. We 

present the methods employed for the parametrization, including energy decomposition 

analysis (EDA) and comparison of the GEM-DM multipole results to the Gaussian 

distributed multipole analysis (GDMA) results. Subsequently, we describe the 

methodology of the force field development and the details for the molecular dynamics 

simulations based on the new parameters. Finally, we discuss the results and MD 

simulations on these ILs. 

1.2.2  Pyrrolidinium-based ionic liquids 

Lithium ion batteries are widely used in various areas including portable electronics, 

electric vehicles and aerospace applications, among others due to their high energy 

density, low self-discharge, low maintenance and small size and weight. Lithium ion 
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battery technology shows great promise as power sources that can revolutionize the 

electric vehicles industry. 

Typically, organic electrolytes such as ethylene carbonate (EC) have been used in 

batteries; however, these types of electrolytes are volatile and amiable, raising safety 

concerns especially for high temperature applications. Recently, ionic liquids have been 

introduced as new electrolytes for lithium ion batteries due to their unique properties. 

However, these electrolytes are most commonly identified as poor electrolytes in 

batteries.90-92 To address this issue, a detailed, atomic level understanding of ion transport 

processes and redox stability would help to improve the design of electrolyte-electrode 

couples in batteries. Our combined computational and experimental approach was 

inspired by this principle to design a new electrolyte for Li-ion batteries. 

The wide variety of cation-anion combinations make the synthesis and experimental 

determination of ILs properties an expensive and time consuming process. The synthesis 

of highly pure ILs places particular demands on the preparative work. Moreover, 

predicting which ILs are well suited for a given application remains an important pre-

synthesis pursuit. 

In Chapter 6, we present force field development and MD simulation along with some 

experimental study for spirocyclic pyrrolidinium tetraflorouborate [sPyr+][BF4
-]. In 

addition, a computational study on the properties of this IL pair with added Li is 

presented. This chapter describes a brief overview of the parametrization details followed 

by a description of the experimental characterization and the details of the MD 
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simulations. Subsequently, it details the results and discussion of some thermodynamical 

and transport properties, followed by concluding remarks. 

1.2.3  Water 

Water is arguably the most important and interesting liquid on earth. It has many 

interesting physical and chemical properties largely due to the ability of water molecules 

to form multiple hydrogen bonds. Unique properties such as the temperature of maximum 

density, large heat capacity, expansion on freezing, and unique solvation properties make 

water very important in several areas including biology and geology. The manner in 

which water interacts with ions, organic molecules, and biomolecules holds the key for 

many questions about the foundation of biomolecular structure and function. The 

investigation of microscopic properties of liquid water remains a subject of intense 

research.101-107 Several theoretical and computational models have been developed to 

attempt to describe the detailed microscopic properties of water. These models can be 

useful tools to guide and supplement experimental work.78, 108-110 There are many non-

polarizable and polarizable water models as has been reviewed extensively.111-112 Some 

of these potentials are very popular in computational studies; for instance, point charge-

based TIP3P water model is widely used for biomolecular simulations.113 This model was 

parameterized to reproduce a number of properties at ambient conditions, including heat 

of vaporization, liquid density, and isobaric heat capacity at 298 K.114 However, this 

model has been shown to fail to reproduce thermodynamic properties at elevated 

temperatures.112, 115-116 Improvements based on TIP3P have been developed in several 

improved models such as TIP4P and TIP4P-Ew.114 One of the main reasons for the issues 
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observed from these simple models involves the reduced accuracy of the non-bonded 

interactions. This reduced accuracy arises from several factors, including the inaccurate 

representation of the charge density anisotropy, the failure to account for penetration 

effects,75 and the neglect of many-body interactions.117 There are several ways to address 

these shortcomings; for instance, the error due to charge density anisotropy can be 

reduced by using higher-order multipoles; however, these models do not account for 

penetration errors.85, 118 The penetration effect may be accounted by the use of damping 

functions at close distances.85-86, 88, 119-121 In addition, various explicit polarization models 

have been introduced to account for the change in the charge distribution due to an 

external electric field.122-123 The inclusion of polarizabilities also results in (partial) 

accounting of many-body effects.120 For instance, the POL3 model124 is an atomic 

polarizable water model that employs undamped isotropic dipoles.125 Some polarizable 

models such as AMOEBA,82 SIBFA,80 EFP,126 XPOL127-128 and NEMO129 rely on 

distributed multipoles and explicit polarization for the electrostatic component of the 

non-bonded interactions. The improved description of the charge density anisotropy 

results in an improved reproduction of the electrostatic interactions due to the use of 

multipoles.83-84, 118, 130-131 One of the most accurate current models to describe water is the 

MB-pol potential developed by Babin et al.132-133 MB-pol relies on the many-body 

expansion at medium and short range combined with a multipolar polarizable description 

at long range and inclusion of nuclear quantum effects.132-133 MB-Pol is able to reproduce 

structural, thermodynamic, and dynamical properties of the liquid phase as well as dimer 

vibration-rotation tunneling spectrum, second and third virial coefficients, and cluster 
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structures and energies in the gas phase.133-134 AMOEBA is a multipolar polarizable 

potential that relies on distributed atomic multipoles up to the quadrupole and inducible 

point dipoles. The original AMOEBA water model, referred to as AMOEBA03 herein,78, 

135 employs mutual induction of dipoles at atomic centers for the reproduction of the 

polarization component. AMOEBA03 also employs a Tholè damping function to avoid 

the so-called polarization catastrophe136 at short range. This potential showed 

improvement in the description of several gas-phase properties of water, which was 

attributed to the use of multipole moments beyond the monopole.137 The AMOEBA03 

model also shows good agreement with various thermodynamic properties compared to 

experiment.78 A scaled-down version of the AMOEBA water model, termed iAMOEBA 

(inexpensive AMOEBA),138 was introduced in 2013. The computational cost is reduced 

by a factor of two by implementing a method of direct polarization,138 that is, in 

iAMOEBA only the electric fields that arise from the permanent multipoles are taken into 

account for the calculation of the polarization. The distinctive feature of iAMOEBA 

compared with AMOEBA03 is the use of ForceBalance for its parametrization.139 

Parametrization by means of ForceBalance involves the use of an objective minimization 

procedure to optimize the fitting parameters by combining gas-phase quantum data and 

computed thermodynamic properties.138 A large and diverse data set with different 

weights and scaling factors such as experimental liquid properties and ab initio quantum 

mechanics (QM) gas-phase dimer results are used to optimize the parameters. We have 

recently developed a similar method for optimization of vdW parameters by fitting the 

dimer energies, density, and heat of vaporization to ab initio and experimental data.140 
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Recently, a new AMOEBA water model has been introduced, which also relied on the 

ForceBalance approach (AMOEBA14).141 AMOEBA14 showed significant improvement 

over both AMOEBA03 and iAMOEBA for a number of liquid properties across a range 

of temperatures and pressures, as well as gas-phase properties. An alternative way to 

improve the accuracy of the electrostatic interactions is to employ a continuous 

description of the charge density. One method that relies on this approach is the Gaussian 

electrostatic model (GEM),87, 89, 142-143 which uses Hermite Gaussian functions to describe 

the molecular charge density. An added advantage of the fitting procedure for GEM is 

that it enables the calculation of explicitly finite distributed multipoles (GEM-DM).143 

These multipoles have been employed to describe the electrostatic interactions in the 

AMOEBA potential.76, 79 The original AMOEBA parametrization with GEM-DM was 

focused on several systems including liquid water. The electronic density for this water 

model was fitted by employing a basis set that included Gaussian Hermite functions up to 

l = 2 for the oxygen and l = 0 (only s-type functions) on the hydrogen atoms.79 Therefore, 

the final distributed multipoles for the water model involve monopoles, dipoles, and 

quadrupoles on the oxygens and only monopoles on the hydrogen atoms. This initial 

AMOEBA model with GEM-DM showed very good agreement for liquid structure, 

density, and heat of vaporization compared with experimental data at 298 K. However, it 

failed to predict the temperature of maximum density of water. 

In Chapter 7, we report the parametrization of a new AMOEBA water model using 

GEM-DM by considering moments up to quadrupoles on both oxygen and hydrogen 

atoms. The multipoles, which are fitted to QM data, describe the electrostatic interaction 
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very well at long and medium range. The van der Waals parameters are fitted to 

experimental density and heat of vaporization at ambient condition. The accuracy of the 

AMOEBA/GEM-DM force field is tested by running a series of simulations and 

comparing thermodynamic and transport properties to results from a published 

benchmark of water properties reported by Vega et al.114 The calculated results are shown 

to reproduce liquid- and gas-phase properties very well for a broad range of temperatures 

including the temperature of the maximum density of water as well as other 

thermodynamic and transport properties. In this chapter, we also describe the 

methodology and results for the parametrization of the force field and molecular 

dynamics simulations. 
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CHAPTER 2  MUTATIONS AT A SINGLE ACTIVE SITE RESIDUE 
IN TET2 STALL OXIDATION AT 5-HYDROXY METHYL 
CYTOSINE AND REVEAL REQUIREMENTS FOR CATALYSIS 

Portions of the text in this chapter were reprinted or adapted with permission from: 

Nat. Chem. Biol., 13, 181 (2017). All rights to the work are retained by the authors and 

any reuse requires permission of the authors. 

2.1  Introduction  

Ten-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-

methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-

formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each 

individual base forms and functions in epigenetic regulation and prompts the question of 

whether TET enzymes primarily serve to generate hmC, or whether they are adapted to 

produce fC variants that permit oxidation to hmC but largely eliminate fC/caC. Our 

molecular dynamics simulations along with some biochemical analyses, elucidated an 

active site scaffold that is required for wild type stepwise oxidation and that, when 

perturbed, explains the mutants’ hmC-stalling phenotype. Our results suggest that the 

TET2 active site is shaped to enable higher-order oxidation and provide the first TET 

variants that could be used to probe the biological functions of hmC separately from fC 

and caC. 

2.2  Computational methods 

Forty-four molecular dynamics (MD) simulations were carried out on wild type and 

all experimentally tested mutants (T1372S/C/A/E/Q/N/D/V, Y1902F, T1372A/Y1902F) 

with all four cytosine derivatives (mC/hmC/fC/caC), α-KG, and Mg(II). All structures 
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were modeled based on wild type hTET2-CS bound to mC containing DNA (PDB 

4NM6).13 Initially, the PDB structure was evaluated with MOLPROBITY144
  to check all 

possible rotamers, followed by hydrogen atom addition to every system with the Leap 

program145
 using the ff99SB parameter set146

 and solvation in a truncated octahedral box 

of TIP3P water.113 In addition, protonation states of titratable residues were tested with 

Propka, which confirmed that the default ionization at pH 7 was correct for all 

residues.147-148 All systems were explicitly neutralized with potassium counter ions, 

which were added to the system using the LEaP program. The final system size was 

~60,000 total atoms with 17-21 counter ions. All structures were minimized with 3,000 

steps of conjugate gradient, followed by gradual warm-up to 300 K using Langevin 

dynamics with a collision frequency of 1.0 ps-1 in the NVT ensemble for 100 ps. All 

simulations were performed with the GPU version of the pmemd program in AMBER12. 

146 The force field parameters for all cytosine derivatives α-KG, Mg(II), and Zn that are 

not available in the default ff99SB set are developed in house. The iron cation was 

approximated by using Mg(II) parameters based on the precedent established by previous 

studies on AlkB.20-21 Once the systems achieved the target temperature, production MD 

simulations were performed using Langevin dynamics with a collision frequency of 1.0 

ps-1
 in the NPT (Canonical) ensemble with the Berendsen barostat using a 2 ps relaxation 

time at 300 K. The production length for each of the simulations was 50 ns, and 

snapshots were saved every 10 ps, and all snapshots were subjected to subsequent 

analysis. Values reported are generally a time average over calculations from all 

snapshots. The most relevant simulations were performed 2-5 times for 50 ns each, with 
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the results averaged across all simulations. All systems were simulated using the 

Amberff99SB force field with a 1 fs step size and a 9 Å cutoff for non-bonded 

interactions. SHAKE was used for all the simulations, and the smooth particle mesh 

Ewald (PME) method149
 was employed to treat long-range Coulomb interactions. 

Hydrogen bond, root mean square deviation (RMSD), and distance analysis on 

trajectories were carried out using the CCPTRAJ module150  available in the AMBER 12 

suite, and the trajectories were visualized with the VMD program.151 Hydrogen bond 

analysis criteria were 1) angles over 120 degrees and 2) O-H distances less than 3 Å 

(default cpptraj settings). Additional analyses to investigate intermolecular interactions in 

the active site were carried out by non-covalent interaction analysis (NCI) and energy 

decomposition analysis (EDA).  

NCI is a visualization tool to identify non-covalent interactions between molecules.152 

The results obtained from the NCI analysis consist of surfaces between the interacting 

molecules. These surfaces are assigned specific colors to denote the strength and 

characteristic of the interactions: green surfaces denote weak interactions (e.g. van der 

Waals), blue surfaces strong attractive interactions (e.g. hydrogen bonds), and red 

surfaces strong repulsive interactions. The NCI calculations were performed with the 

NCI-Plot program.153 We focused on the hmC systems, and a representative snapshot 

from every system was subjected to NCI analysis. In all cases, the hmC substrate was 

considered as a ligand interacting with a spherical region of 10 Å around the binding site. 

All calculations were obtained with a step size of 0.2 Å for the cube and a cutoff of 5 Å 

for the calculation of the interactions between the nucleotides and the active site. The 
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snapshots for NCI plots have been selected to highlight the most frequent interactions 

relevant to the underlying mechanism.  

All EDA calculations were carried out with an in-house FORTRAN90 program to 

determine the non-bonded interactions (Coulomb and VdW interactions) for all the 

residues.43, 154-155 The average non-bonded interaction between a particular cytosine 

derivative and every other residue, ΔEint, is approximated by ΔEint =<ΔEi>, where i 

represents an individual residue, ΔEi represents the non-bonded interaction (Coulomb or 

VdW) between residue i and the particular cytosine derivative, and the broken brackets 

represent averages over the complete production ensemble obtained from the MD 

simulations. This analysis has been previously employed for QM/MM and MD 

simulations to study a number of protein systems.20-21, 156-159 As noted, the above-

described analyses were performed on each individual snapshot over each individual 

simulation, and the reported data consist of the averages over all the simulations for each 

system. 

2.3  Results and discussion 

2.3.1  Summary of experimental results 

Saturation mutagenesis at Thr1372 perturbs stepwise oxidation according to side 

chain properties. The experimental screening on mutant activities were performed by our 

experimental collaborators at University of Pennsylvania. Dot blotting showed that 

mutations at Thr1372 produced distinctive patterns of cytosine oxidation, which cluster 

based upon the biochemical properties of the side chain (Figure 2.1 a). Replacing 

Thr1372 with a proline, positively charged (H, K, R), or bulkier hydrophobic residue (I, 
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F, L, M, W, Y) renders TET2 inactive. Only the T1372S mutant, which preserves the side 

chain hydroxyl group, exhibits wild type-like activity. Smaller residues (A, C, G) are 

proficient at oxidation to fC and caC, but at reduced levels compared to wild type. Most 

remarkably, the acidic or related polar residues (D, E, N, Q) and the nearly isosteric 

valine permit wild type-like formation of hmC but no fC or caC, as detected by dot blot. 

Given this stalling of oxidation at hmC, Thr1372 appeared to play a unique role in 

stepwise oxidation. 

 

Figure 2.1 Experimental screen for mutant activity. (a) Dot blots for mC, hmC, fC, and 
caC. (b) Genomic levels of mC, hmC, fC, and caC modifications quantified by LC-
MS/MS. 

Nucleoside LC-MS/MS quantifies range of mutant activity. Fig 2.1 b shows the 

quantified cellular activity of all Thr1372 mutants capable of oxidizing at least to hmC. 

While the total modified cytosine bases (mC + ox-mCs) were similar across all 

conditions, the distribution of specific modifications differed significantly. The mutants 

exhibit a gradient of activity reflected in the fraction of genomic ox-mC. T1372S is the 

only mutant with wild type-like levels of fC and caC, and hmC levels slightly higher than 
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wild type. A step below, T1372C/A/G mutants generate wild type-like levels of hmC but 

only one-third to one-half as much fC and barely detectable caC. Further down the 

activity gradient, another group consisting of the E/Q/N/D/V mutants produce hmC at 

levels at least half that of wild type, but fC and caC are below detection limits, consistent 

with the dot blotting results. Among this group, T1372E appears to have the highest 

activity with wild type-like hmC levels and <1% fC, while T1372V is lowest, generating 

half as much hmC but no fC. Finally, the slightly bulkier T1372I mutant resembles the 

vector control, underscoring the steric constraints at this position. Thus, the LC-MS/MS 

results more clearly elucidated the patterns seen on dot blot, showing a spectrum of 

activity among the Thr1372 mutants correlating with the side chain properties, with 

E/Q/N/D/V mutants stalling oxidation at hmC. 

2.3.2  Modeling reveals the mechanism behind wild type and mutants’ behavior 

Computational modeling of mutants reveals a critical Thr1372-Tyr1902 scaffold. To 

probe potential mechanisms behind the mutants’ effects, we turned to molecular 

dynamics (MD) simulations of all the active Thr1372 variants. We drew from our 

experience with modeling AlkB20-21
 to perform classical MD simulations of wild type 

hTET2-CS and the Thr1372 mutants bound to each of the four cytosine derivatives. 

Our wild type results with modeled hmC and fC proved mostly consistent with the 

more recently published structures of TET2 with hmC and fC,13 as the key interactions 

between the enzyme, α-KG, the active site metal ion, and the DNA substrate are observed 

for varying durations across our simulations. 
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Table 2.1 RMSDs for protein backbone in wild type and mutants with hmC-containing 
DNA. 

RMSD-protein (5hmC) RMSD-Protein (5hmC) 

T1372A 2.10 ± 0.37 Y1902F 2.53 ± 0.26 

T1372A-Y1902F 2.39 ± 0.23 T1372C 2.40 

T1372E 2.85 ± 0.18 T1372S 2.43 

T1372N 2.29 ± 0.34 T1372V 2.79 ± 0.06 

T1372D 2.45 ± 0.26   

 

Furthermore, energy decomposition analysis (EDA) and the root-mean-square 

deviation (RSMD) comparing the simulations to the reference crystal structure show that 

the cytosine bases stably occupy the active site across time in all our models (Table 2.1, 

2.2, 2.3). The hmC models in particular revealed distinct patterns of active site 

interactions in wild type, C/A/G, and E/Q/N/D/V mutants, consistent with hmC being the 

fulcrum of the observed stalling effect. Most prominently, these distinctions highlight a 

key structural scaffold in the wild type enzyme that is required for efficient stepwise 

oxidation. The wild type active site scaffold consists of two interactions. 

First, Thr1372 forms a hydrogen bond with Tyr1902 (Figure 2.2a, 2.4a). This 

hydrogen bond is observed in 65% of the simulation time (average over five runs of 50 ns 

each), and the total non-bonded interaction energy between these residues is –3.37 

kcal/mol (Figure 2.2b). 

Second, the Thr1372-Tyr1902 interaction orients Tyr1902 to promote non-bonded 

interactions with hmC (total -6.10 kcal/mol) (Figs. 2.2b, 2.4a, Tables 2.3, 2.4). This core 

scaffold is present across all wild type models bound to mC/hmC/fC/caC and remains 
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fully intact in the T1372S mutant (Figure 2.4b), consistent with this mutant’s wild type-

like activity in cells. All the other mutants eliminate the Thr1372-Tyr1902 hydrogen 

bond, perturbing the interaction between Y1902 and the substrate base, with a 

corresponding loss of enzymatic activity. For the C/A/G mutants, loss of the Thr1372-

Tyr1902 scaffold appears to weaken interactions between misaligned active site 

components, as exemplified by T1372A (Figure 2.2a, b, 2.4c). 

 

Figure 2.2 (a) Selected snapshots from MD simulations highlighting key active site 
components. (b) Scheme of interactions between key residues and hmC. Hydrogen bonds 
are shown in dashed lines. Non-bonded interactions are indicated in gray and in kcal/mol. 

Combined with the DNA results, we propose that the C/A/G mutants represent a 

“low-efficiency” phenotype, which permit higher-order oxidation but at reduced levels 

compared to wild type. In our modeling, the E/Q/N/D/V mutants go a step further: they 

not only eliminate the Thr1372-Tyr1902 scaffold but also elicit new hydrogen bonds 

specifically with hmC. These new interactions, not present in wild type models, position 

hmC in a different orientation relative to Tyr1902 (Figure 2.2a, b, 2.4d-h). For instance, 
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in T1372E, the Glu1372 hydrogen bonds directly with hmC for 88% of the simulation 

time (average over two runs of 50 ns each). Direct hydrogen bonding to hmC is also 

observed in T1372D and Q, whereas in T1372N and V, the new hydrogen bond is 

between hmC and other nearby residues (Figure 2.4d-h, Tables 2.3, 2.4). For example, 

T1372V elicits an hmC-Asp1384 hydrogen bond (38% of simulation time, average over 

two runs of 50 ns each). We suggest that the loss of the Thr1372-Tyr1902 scaffold, 

together with new interactions specific to hmC, could contribute to the unique stalling 

phenotype of T1372E/Q/N/D/V mutants, which we term “hmC dominant”. 

 

Figure 2.3 (a) Our modeling for Y1902F single mutant and T1372A/Y1902F double 
mutant. (b) Reaction of purified mutant on substrate, analyzed by LC-MS/MS. (c) To 
highlight fC and caC in the reaction products, the purified oligos were treated with 
recombinant TDG. 
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Figure 2.4 Non-covalent interaction (NCI) analysis on a representative snapshot for wild 
type hTET2-CS and mutants in the presence of hmC. (a) wild type (b) T1372S (c) 
T1372A (d) T1372E (e) T1372Q (f) T1372N (g) T1372D (h) T1372V (i) Y1902F. Key 
interactions are circled. The coordinating water occupying the sixth (equatorial) position 
is omitted for clarity. The isovalue for NCI is 0.3 au, and -0.2 au < sign(𝜆+)𝜌 < 0.2 au. 

Experimental results strongly support our model that the Thr1372-Tyr1902 scaffold is 

required for wild type TET2 activity. Loss of the active site scaffold decreases the 

activity of low-efficiency mutants and has a more severe effect on hmC-dominant 
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mutants, which do not make significant fC/caC even under driving reaction conditions 

(Fig 2.1). 

Table 2.2 EDA analysis between key residues and (a) 5mC, 5hmC and (b) 5fC, 5caC for 
all systems. X1372 denotes the residue at the 1372 position. Energies are given in 
kcal/mol, time averaged over the entire ensemble  

(a) Total 
Y1902-5mC 

Total 
X1372-5mC 

Total 
X1372-Y1902(5mC) 

Total 
Y1902-5hmC 

Total 
X1372-5hmC 

Total 
X1372-Y1902 (5hmC) 

WT –5.18 ± 0.67 –2.76 ± 0.74 –3.55 ± 0.43 –6.10 ± 0.78 –3.59 ± 0.89 –3.37 ± 0.50 

T1372S –3.98 –3.02 –4.25 –6.59 –2.89 –3.02 

T1372C –6.03 –2.45 –1.54 –6.37 –3.94 –1.59 

T1372A –10.84 –1.50 –0.97 –5.69 ± 0.55 –1.40 ± 0.76 –0.91 ± 0.16 

T1372E –7.83 25.49 0.56 –6.76* ± 1.75 18.56 ± 0.20 0.32 ± 0.72 

T1372Q –8.36 –4.92 –1.48 –5.69 ± 1.56 –6.03 ± 2.37 –1.39 ± 0.38 

T1372N –6.22 –4.47 –1.81 –5.10 ± 0.59 –7.34 ± 4.14 –1.77 ± 0.33 

T1372D –5.42 22.59 –0.38 –6.25* ± 3.86 22.78 ± 0.82 –1.36 ± 3.89 

T1372V –4.40 –2.81 –0.94 –5.74 ± 0.26 –2.30 ± 0.29 –1.02 ± 0.08 

Y1902F –4.05 –2.35 –1.50 –3.39 ± 0.06 –4.84 ± 2.09 –1.14 ± 0.28 

T1372A-Y1902F –1.91 –2.37 –0.66 –2.10 ± 1.21 –1.85 ± 0.65 –0.70 ± 0.11 

 

(b) Total 
Y1902-5fC 

Total 
X1372-5fC 

Total 
X1372-Y1902 (5fC) 

Total 
Y1902-5caC 

Total 
X1372-5caC 

Total 
X1372-Y1902 (5caC) 

WT –7.19 ± 0.59 –4.30 ± 0.17 –2.78 ± 0.26 –5.49 ± 0.57 –13.15 ± 5.56 –0.73 ± 0.91 

T1372S –6.98 –4.14 –3.01 –3.08 –10.98 –2.15 

T1372C –6.35 –3.69 –1.30 –5.05 –5.22 –1.85 

T1372A –7.57 –1.18 –0.98 –5.94 –3.44 –0.74 

T1372E –5.60 23.12 1.25 –6.18 85.40 –7.46 

T1372Q –6.22 –10.18 –1.46 –6.54 –23.42 –24.09 

T1372N –6.15 –9.29 –1.26 –6.41 –15.35 –1.24 

T1372D –4.61 20.58 –9.38 –6.67 85.10 –13.56 

T1372V –7.42 –2.28 –0.95 –5.42 –4.32 –1.16 

Y1902F –3.94 –2.95 –1.42 –6.38 –14.16 –1.45 

T1372A-Y1902F –3.80 –2.37 –0.74 –3.86 –2.26 –0.66 

 

In addition, the hmC-dominant mutants exhibit decreased activity overall, but the 

usual mild preference for mC substrate is not sufficient to explain the larger loss of 
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activity on hmC. Tyr1902 mutagenesis strongly supports model of active site 

interactions. Our MD simulations suggested that perturbations to the active site scaffold 

could introduce aberrant interactions that contribute to the additional loss of activity on 

hmC.  

Table 2.3 Hydrogen bond analysis between key residues and (a) 5mC, (b) 5hmC, (c) 5fC, 
and (d) 5caC. X1372 denotes the residue at the 1372 position. Values are percentage of 
simulation time in which the hydrogen bond was observed. The values in parentheses are 
for the model with Fe(II) parameters. Only bonds observed in >10% of simulation time 
are included. 

 X1372-Y1902 
(5mC) 

X1372-Y1902 
(5hmC) 

5hmC-
X1372 

5hmC-other X1372-
Y1902 (5fC) 

X1372-
Y1902 

5caC-
X1372 

5caC-
other 

WT 77 65 - 16-D1384, 16-αKG 55 14 78 81-
R1261 

T1372S 85 56 - - 53 39 49 186 
R1261* 

T1372C - - - - - - - - 

T1372A - - - 17-αKG - - - - 

T1372E - - 88 - - 27 - 38 
R1261 

T1372Q - - 21 42-D1384 - - 98 - 

T1372N - - - 22-S1286, 16-Y1902, 14-
αKG 

- - 57 21 
R1261 

T1372D - - 16) 16-αKG 59 80 - 27 
R1261 

T1372V - - - 38-D1384 - - - 12 
R1261 

Y1902F - - 18 11-D1384 - - 87 - 

T1372A-
Y1902F 

- - - 57-R1261, 43-αKG, 15-
T1259, 12-S1286, 11-S1284 

- - - - 

 

We were cognizant of the challenges to modeling new interactions with classical MD 

and therefore subjected this model to an independent test: mutating the other scaffold 

residue, Tyr1902, to Phe. Our modeling predicts that Y1902F would liberate Thr1372 to 

form a hydrogen bond directly with hmC (18% of simulation time, average over two runs 

of 50 ns each), potentially favoring an hmC-dominant phenotype (Figure 2.3, 2.4i). 
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Taking the hypothesis one step further, by adding a T1372A mutation to Y1902F, our 

modeling predicts that the T1372A/Y1902F double mutant could rescue activity by 

alleviating the aberrant hydrogen bonding interaction. 

Table 2.4 Energy decomposition analysis (EDA) for 5mC/hmC/fC/caC with all protein 
residues. The number of simulation runs are specified in parentheses. Values are kcal/mol, 
time averaged over the entire ensemble. 
 5mC 5hmC 5fC 5caC 

WT -106.58±8.56(n=3) -114.03±10.77(n=5) -101.56±5.51(n=3) -160.05±29.12(n=3) 

T1372S -75.83 -83.92 -99.14 -191.59 

T1372C -86.09 -105.90 -88.32 -116.01 

T1372A -69.25 -110.20 ±15.58(n=2) -110.11 -134.67 

T1372E -92.54 -92.98 ±1.75(n=2) -68.71 -18.46 

T1372Q -89.49 -114.93 ±38.25(n=2) -119.55 -92.80 

T1372N -101.45 -113.70 ±5.25(n=2) -102.18 -134.69 

T1372D -74.64 -63.41 ±51.68(n=2) -71.82 -10.39 

T1372V -88.26 -76.21 ±16.39(n=2) -64.76 -61.85 

Y1902F -78.21 -133.45 ±5.88(n=2) -87.23 -123.85 

T1372A-

Y1902F 
-90.50 -117.76 ±33.45(n=3) -89.39 -75.13 

 

To test these predictions, we compared the activities of purified T1372A, Y1902F, 

and T1372A/Y1902F enzymes in vitro. The results strikingly confirmed our predictions 

(Fig 2.3b, c). While Y1902F shows only trace generation of fC/caC, the addition of the 

second mutation in T1372A/Y1902F restores stepwise oxidation and mirrors the results 

for T1372A. Thus, our structural modeling correctly predicts the biochemical behavior of 

the Y1902F and T1372A/Y1902F mutants, strongly supporting both the requirement of 
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the Thr1372-Tyr1902 scaffold for wild type stepwise oxidation and the contribution of 

aberrant active site interactions to the hmC-dominant phenotype. 

2.4  Conclusions 

TET-catalyzed stepwise oxidation populates the mammalian epigenome with three 

ox-mC bases, making it critical to dissect how each individual base forms and functions. 

Previous studies have elucidated various biases in favor of the first oxidation step, mC-to-

hmC conversion, implying that TET enzymes may be primarily adapted for making hmC, 

with fC/caC as rare oxidative “overflow” products. However, in light of evidence for the 

importance of fC/caC in active DNA demethylation and as stable epigenetic marks, we 

asked whether TET enzymes bear structural features that specifically support fC/caC 

formation. 

We have shown that a conserved Thr1372-Tyr1902 active site scaffold is required for 

efficient higher-order oxidation by human TET2, suggesting that the enzyme is shaped to 

enable production of not only hmC but fC/caC as well. We further uncover Thr1372 

mutations that effectively abrogate higher-order oxidation by disrupting the active site 

scaffold; these are the first human TET variants that dissociate the steps of oxidation, 

providing a new tool to directly test the functions of hmC versus fC/caC. As a structure-

function determinant in TET2, the Thr1372-Tyr1902 scaffold invites comparison to 

known TET homologues. In human TET2, the Ala-Phe double mutant only permits low-

efficiency stepwise oxidation, suggesting that the Thr-Tyr dyad may have evolved to 

fine-tune efficient fC/caC generation. By leveraging this scaffold, our results offer the 

first variants that produce distinct stepwise oxidation patterns in human TET enzymes. 



www.manaraa.com

 
31 

 

 

Our combined computational and biochemical approach shows how T1372E/Q/N/D/V 

mutants could reconfigure active site interactions to produce the hmC-dominant 

phenotype. As exemplified by T1372E, these mutants disrupt the active site scaffold, 

which results in moderate loss of overall catalytic activity.  

To account for the additional loss of activity on hmC, our modeling most prominently 

implicates new hydrogen bonding to hmC in these mutants. While modeling is always 

subject to a dependence on input parameters, our calculations correctly predict the hmC-

dominant behavior of the Y1902F single mutant, as well as rescued activity in the 

T1372A/Y1902F double mutant. Indeed, it is quite unusual that the addition of a second 

mutation rescues activity of the first, helping to bolster our mechanistic model. We note, 

however, that other related mechanisms could also play a role and are not mutually 

exclusive with this model. These possibilities reflect the complex dynamics of TET-DNA 

interactions, which remain priorities for future research. 

Importantly, independent of the mechanism of action, the hmC-dominant Thr1372 

mutants fill the need for experimental tools to dissect the individual steps of mC 

oxidation. If introduced into a suitable model system, these new TET variants potentially 

allow for the first direct studies of the epigenetic functions of hmC as distinct from fC 

and caC. Until now, functional studies have by necessity been all-or-none, showing that 

loss of one or more TET isozymes can produce diverse phenotypes. In many cases, 

reintroduction of a single active TET isozyme can fully rescue the phenotype. Such 

systems provide ideal opportunities to introduce low-efficiency and hmC-dominant TET 

variants to probe whether hmC alone is sufficient to rescue the defect, whether fC/caC 
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are required, or whether interacting enzymes such as TDG are actually the key players. 

These direct functional applications, made possible by manipulation of the TET active 

site itself, would solidify whether TET enzymes evolved in favor of generating all three 

ox-mCs. These will bring new challenges as well, such as examining the mutants’ 

activity under more physiological conditions. It will also be important to determine 

whether the mutant phenotypes in TET2 translate to other TET isoforms, which is needed 

both for applying the mutants in various biological systems and for helping to address 

whether TET1/2/3 have similar or distinct mechanisms of action. Finally, we envision 

that chemical biology approaches, including additional mutagenesis or unnatural 

modifications along the Thr1372-Tyr1902-cytosine scaffold, could further hone 

selectivity for particular bases and potentially uncover TET variants that stringently stall 

at fC as well or accelerate conversion to caC. 
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CHAPTER 3  INSIGHT INTO TET2-MEDIATED 5-HYDROXY 
METHYL CYTOSINE OXIDATION USING AB INITIO QM/MM 
CALCULATIONS 

3.1  Introduction 

Ten-eleven translocation 2 (TET2) converts 5-methylcytosine (5mC) to 5-hydroxy-

methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by a 

sequential oxidation mechanism. Our biochemical and computational studies discussed in 

Chapter 2, uncovered an active site scaffold that is required for wild type stepwise 

oxidation.16 We showed that the mutation of a single residue, T1372, can impact the 

iterative oxidation steps and stop the oxidation of 5hmC to 5fC/caC. 

However, the source of the stalling at the first oxidation step by some mutants still 

remains unclear. Here, we studied the catalytic mechanism of oxidation of 5hmC to 5fC 

mediated by TET2 using an ab initio quantum mechanical/molecular mechanical 

(QM/MM) approach.  

Our results suggest that the first step, which is the rate-limiting step, involves a 

hydrogen atom abstraction from the hydroxyl group of 5hmC by the ferryl moiety in the 

wild type. Our results are in very good agreement with the results obtained for other 

enzymes of the Fe/𝛼 -KG dependent super family such as AlkB. Furthermore, our 

calculations for the T1372E mutant show very large barrier for the 5hmC to 5fC 

oxidation due to unfavorable orientation of 5hmC.  

Combined electron localization function (ELF) and non-covalent interaction (NCI) 

analyses provides a qualitative description of the electron structure evolution along the 

reaction path. Energy decomposition analysis (EDA) has been performed to investigate 
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the impact of each MM residues on catalytic activity. Our computational results 

demonstrate the substrate preference of TET2 and can provide guides for future 

experimental and theoretical research on TET2. 

3.2  Computational methods 

Two systems corresponding to TET2 with 5hmC and 5fC substrates were generated 

and equilibrated based on the TET2 crystal structure with 5mC (PDBID: 4NM6160) as 

discussed in Chapter 2.16 Several stable structures were extracted from the MD 

simulation to perform QM/MM optimizations on the reactant state (with 5hmC). The 

water molecule coordinated to the iron atom (trans to H1881) was replaced by an oxyl 

moiety. The 𝛼-KG molecule was also replaced by a succinate molecule since the present 

work is focused on the mechanism after the formation of the ferryl moiety and succinate. 

The mechanism studied in this paper is presented in Figure 3.1. The snapshot with the 

lowest energy was selected for further QM/MM calculations. All the QM/MM 

calculations were performed with LICHEM,161 which is able to interface Gaussian09162 

and TINKER163 to perform additive QM/MM with electrostatic embedding. 

For each model, the QM part contains the Fe atom, the side chain of the residues 

coordinated to the iron (H1382, D1384 and H1881), the oxyl moiety, the succinate 

molecule, the water molecule (coordinated to the iron at an equatorial position) and 

substrate base (5hmC or 5fC). As the residues T1372 and Y1902 were found to establish 

a scaffold which is essential for iterative oxidation, they are also included in the QM 

regions. Fang et al. showed that the existence of a water molecule which is located near 

Fe(IV)=O is very important for the mechanism of AlkB, another Fe/	
  𝛼-KG dependent 
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enzyme.20 We observed from our MD simulations, one water molecule from the solvent 

diffuses into the active site and occupies the vacancy between D1384 and 5hmC for 

almost the entire simulation time. 

 

Figure 3.1 Overall mechanism for 5hmC to 5fC oxidation in TET2. The “2nd-shell" water 
molecule is shown in red. 

Therefore, we included that water molecule in our QM region. This water will be 

named as the “2nd-shell” water molecule in the subsequent discussion to distinguish it 

from the coordinated water at the equatorial position. Figure 3.2 shows QM and 

pseudobond atoms in the reactant state and the “2nd-shell” water molecule is circled in 

red. All calculations were carried out in the quintet electronic state since previous 

spectroscopic 27 and computational 20, 164-165 studies found that mononuclear iron enzymes 
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were in the high-spin (S=2) electronic ground state configurations and quintet Fe(IV)-oxo 

species was the most reactive toward C-H bond activation. 

 

Figure 3.2 QM/MM active site in the wild type TET2. The protein (DNA) in MM region 
is shown in cyan (brown). The purple atoms are the pseudobond atoms. The “2nd-shell" 
water molecule is shown by a red circle. 

The QM region was modeled at the 𝜔B97XD/6-311G(d,p) level of theory.20, 166 167 

The recent studies on the hydrogen abstraction mechanism by cytochrome P450 and 

AlkB indicate the importance of this functional in calculation of the barrier energy, and 

for the accurate description of the Fe(IV)=O intermediate.168-169 The remainder of the 

system (MM region) was treated by the AMEBR99SB force field.146 In LICHEM, the 

geometry optimizations are performed by adding the MM point-charges to the effective 

QM Hamiltonian,170-171 where the QM and MM atoms are optimized separately.161 To 
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have a smooth connection at the QM/MM interface, the boundary atoms were modeled 

by the pseudobond approach.172 

After the reactants and products were fully optimized, the Nudged Elastic Band 

(NEB) method173-174 as implemented in LICHEM was used for path optimizations 

between critical structures. Frequency calculations were performed for all critical point 

structures, and it was found that reactants and intermediates have no imaginary 

frequencies. The transition states in NEB method are not necessarily optimized at a 

stationary point, because NEB algorithms converges the critical structures onto the 

minimum energy path (MEP). Therefore, the frequency calculations are not performed 

for TSs. 

Energy decomposition analysis (EDA) was used to calculate non-bonded inter-

molecular interaction energies (Coulomb and VdW interactions) between the QM 

subsystem (approximated by ESP fitted charges) and each residue in the MM 

environment for an ensemble of structures of 500 ps. The difference between the average 

interaction energies in the reactant and all critical structures (intermediates and transitions 

states) can qualitatively indicate the impact of each individual residue on the reaction 

barrier. All EDA calculations were carried out with an in-house FORTRAN90 

program.43, 154-155 This analysis has been previously employed for QM/MM and MD 

simulations to study a number of protein systems.20-21, 156-159 

The electron localization function (ELF) analysis175-177 is a topological analysis that 

can measure the electron localization in molecular systems. It was initially proposed on 

the basis of the Hartree-Fock (HF) approach175 and then was extended for DFT. The 
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details on the topological analysis of ELF and its calculation methods in enzyme systems 

have been discussed previously.20-21, 169 All ELF calculations were performed with the 

TopMod package178 with a 2003 au grid with a step size of 0.1 au, and the wave functions 

are truncated, including only the QM atoms. The isovalue for the visualization is 0.5. 

Non-covalent interaction (NCI) analysis is based on the analysis of the relation 

between the electronic density and the reduced density gradient (RDG) in regions of low 

electron density. The results obtained from the analysis consist of surfaces between the 

interacting molecules. These surfaces are assigned specific colors to denote the strength 

and characteristic of the interactions: green surfaces denote weak interactions (for 

example, van der Waals (VdW)), blue surfaces strong attractive interactions (for 

example, hydrogen bonds), and red surfaces strong repulsive interactions. All NCI 

calculations were performed with the NCI-Plot program152-153 using the same truncated 

wave functions as for the ELF calculations. 

3.3  Results and discussion 

3.3.1  Optimization of the reactant structures 

Fourteen and six stable structures from the MD simulation of wild type and T1372E 

mutant, respectively, were extracted to perform QM/MM optimizations on the reactant 

state (5hmC). Figure 3.3 shows the relative energies of QM/MM optimized snapshots for 

wild type and T1372E mutant. The lowest energy snapshots were selected for further 

calculations (snapshot number 2 in wild type and number 3 in T1372E mutant).  
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Figure 3.3 Relative QM/MM energies of the selected snapshots from the MD simulations 
in the wild type and the T1372E mutant. 

The lowest energy structures for the TET2/5fC wild type system were used to model 

the product state for each selected snapshot. We also optimized the product state 

corresponding to the snapshot number 1 in the T1372E mutant due to its relatively low 

energy and different optimized geometry. The optimized geometries of the active site of 

the TET2-5hmC/fC complex in the wild type and the T1372E mutant along with NCI 

results are presented in Figures 3.4, 3.5 and 3.6. 

In the wild type reactant state (Figure 3.4) the oxyl moiety forms a hydrogen bond 

with the “2nd-shell” water molecule (similar to AlkB20), and another hydrogen bond with 

the hydroxyl group of 5hmC, simultaneously. These hydrogen bonds align the ferryl 

moiety and 5hmC in the active site for further oxidation. In the product, the succinate 

forms a hydrogen bond with the newly formed water molecule (at the axial position) to 

stabilize the product. 

Table 3.1 Mulliken spin densities and electron configurations for the reactant of the 
snapshot number 1 and 3 in theT1372E mutant and wild type. 

Mulliken Spin density snapshot number 1 snapshot number 3 Wild type 
Fe (III) 3.28 4.32 3.25 
Oxyl O 0.50 -0.69 0.54 

Electron configuration ISFe(III)-OF HSFe(III)-OAF ISFe(III)-OF
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Figure 3.4 NCI plot for optimized geometries of the active site of the wild type with 
5hmC/fC substrate. The hydrogen bonds are circled in black. The dashed line shows the 
distance between the oxygen atom of 5hmC/fC and the oxyl moiety. The MM subsystem 
is omitted for clarity. 

The calculated reaction energy for the oxidation of 5hmC to 5fC in the wild type is         

-52.0 kcal/mol. The spin densities on the iron and the oxyl moiety in the reactant state are 

3.25 and 0.54, respectively. This result suggests that there are 3 alpha electrons in the d 

orbitals of the iron, and an alpha electron in the p orbital of the oxyl moiety. Therefore, 

the electron configuration for the reactant is ISFe(III)-OF (Table 3.1 and Figure 3.7), 

which agrees well with the electron configuration of the iron-oxyl moiety in AlkB 

reactant.20 
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Figure 3.5 NCI plot for optimized geometries of the active site of the snapshot number 3 
in the T1372E mutant with 5hmC/fC substrate. The hydrogen bonds are circled in black. 
The dashed line shows the distance between the oxygen atom of 5hmC/fC and the oxyl 
moiety. The MM subsystem is omitted for clarity. 

In snapshot number 3 of the T1372E mutant, the oxygen atom of the “2nd-shell" water 

molecule is oriented toward the oxyl moiety (Figure 3.5). This is in contrast with the 

orientation of this water molecule in the wild type (Figure 3.4). Consequently, the spin 

densities on the iron and the oxyl moiety change and indicate the existence of 4 alpha 

electrons on the iron and a beta electron on the oxyl moiety. This spin densities 

correspond to an HSFe(III)-OAF electron configuration (Table 3.1, Figure 3.7). The 

corresponding product is highly stabilized due to a hydrogen bond formed between the 

“2nd-shell" water molecule and the newly formed water molecule. In addition, the new 

water molecule forms a hydrogen bond with formyl group of 5fC. These new interactions 
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provide a large stabilization of the product with a resulting reaction energy of -75.9 

kcal/mol for the E mutant. 

 

Figure 3.6 NCI plot for optimized geometries of the active site of the snapshot number 1 
in the T1372E mutant with 5hmC/fC substrate. The hydrogen bonds are circled in black. 
The dashed line shows the distance between the oxygen atom of 5hmC/fC and the oxyl 
moiety. The MM subsystem is omitted for clarity. 

As explained above, the product corresponding to snapshot number 1 of the T1372E 

mutant was also optimized to investigate whether there are other possible paths for the 

oxidation of this mutant. In contrast with snapshot number 3 of the E mutant, the 

hydrogen atom of the “2nd-shell" water molecule in this snapshot is pointed toward the 

oxyl moiety (similar to the orientation observed in the wild type), therefore, it can not 

form a hydrogen bond with the newly formed water molecule to stabilize the product 
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(Figure 3.6). The spin densities for the iron-oxyl moiety confirm the electron 

configuration of this system is similar to the wild type (ISFe(III)-OF) (Table 3.1).  

 

Figure 3.7 Electron configurations for the iron-oxyl moiety in quintet state. 

These results support the important role of the “2nd-shell" water molecule in the 

oxidation mechanism. Although the electron configuration of the Fe-oxyl moiety is 

similar to the wild type, the reaction energy for this snapshot is very endothermic (31.3 

kcal/mol). Thus, the snapshot number 1 of T1372E mutant was not used for subsequent 

reaction path calculations. 

Our QM/MM optimized structure in both TET2-5hmC/fC complexes in the wild type 

show that T1372 forms a hydrogen bond with Y1902 (Figure 3.4). This hydrogen bond is 

eliminated by mutating T1372 to Glutamate. Instead, the mutated residue (E1372) forms 

a hydrogen bond directly with 5hmC in the active site (Figure 3.5). This new hydrogen 

bond stabilizes 5hmC and disrupts the non-bonded interaction between 5hmC and Y1902. 

Therefore, the 5hmC orientation toward the ferryl moiety changes and the distance 

between the hydroxyl group and the oxyl moiety increases in comparison with the with 

wild type (Figure 3.4, 3.5). The hydrogen bond formed between the amino group of 

5hmC and water molecules in the reactant and the product of the T1372E mutant 
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confirms the misalignment of 5hmC in the active site (Figure 3.5). These observations 

help to explain the large energy barrier calculated for the oxidation of 5hmC to 5fC in 

this mutant compared to the wild type reaction barrier as detailed below.  

3.3.2  NEB path calculations for the oxidation of 5hmC to 5fC  

Based on the optimized reactant and product structures, the potential energy surface 

of the whole reaction pathway of the TET2 mediated oxidation on 5hmC in the wild type 

and the T1372E mutant were obtained and compared. Fe(IV)-oxo in the reactant state in 

our study is generated after O-O heterolysis. The high valence Fe(IV)-oxo species is 

highly reactive and can therefore activate the O-H bond of the substrate and mediate the 

hydrogen abstraction reaction. 

Table 3.2 Comparison of the reaction and the first barrier energies for TET2, AlkB and 
ALKBH2. a Data from A. R. Walker (unpublished) 

 ∆E barrier (kcal/mol) ∆E reaction (kcal/mol) 

AlkB 23.2 -3.7 

ALKBH2a 25.7 -3.5 

TET2 20.1 5.4 

 

The hydrogen abstraction step is known to be the rate-limiting step in the catalysis of 

the Fe(II)/𝛼-KG dependent enzyme, AlkB. Figure 3.8 shows the NEB path for the 5hmC 

to 5fC oxidation in the wild type TET2. The calculated reaction path shows that 5hmC 

converts to 5fC via three steps. The first step is the rate-limiting step with a 20.1 kcal/mol 

barrier. The experimental barrier energy for the rate-limiting step of 1-methyladenine 

(1meA) oxidation mediated with AlkB is 19.8 kcal/mol.179 In addition, a comparison of 
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the calculated barrier and the reaction energies in the wild type TET2, AlkB and ABH2 is 

presented in Table 3.2. 

 

Figure 3.8 NEB path and the optimized geometries of critical structures for the wild type. 
The distance between the carbon and hydrogen atoms of the DNA substrate and the oxyl 
moiety is shown in solid black line. 
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In the second step, the distance between the substrate and the ferryl moiety changes to 

properly orient the substrate for the next step (Figure 3.8). The proton transfer from (-

CH2-) group of 5hmC occurs via a third transition state to form 5fC (Figure 3.8).  

 

Figure 3.9 NEB path and the optimized geometries of critical structures for the T1372E 
mutant. The distance between the carbon and hydrogen atoms of the DNA substrate and 
the oxyl moiety is shown in solid black line. 

The calculated path for the T1372E mutant (Figure 3.9) indicates that this reaction is 

a one-step reaction with a very large barrier (193.9 kcal/mol). This result shows that the 

oxidation of 5hmC to 5fC for this mutant is kinetically impossible. The hydroxyl group 

of 5hmC is pointed toward E1372 to form a hydrogen bond in the reactant, while it 
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rotates toward the oxyl moiety at TS. Therefore, the hydroxyl group of 5hmC needs to 

break the hydrogen bond with E1372 and rotates toward the oxyl moiety to initiate the 

oxidation. Once it breaks the hydrogen bond, the oxidation occurs concomitantly. 

However, the large barrier for the rotation of 5hmC prohibits the oxidation of 5hmC to 

5fC.  

3.3.3  Spin states of critical structures in the path 

According to the proposed reaction mechanism, the ferryl moiety bears two positive 

charges. Ideally, the charge of the iron should be 4+, and the charge of the oxygen should 

be 2-. However, an electron can transfer between Fe and O atoms, and both Fe(IV)=O 

and Fe(III)-O- could be possible. In O- the electron can be spin-down or spin-up, so there 

are two substrates for the quintet and triplet surfaces, respectively, corresponding to 

antiferro- or ferromagnetic coupling to the iron. Fang et al 20 studied the spin density of 

the ferryl moiety in AlkB extensively. They showed that the minimum energy path for 

AlkB oxidation involves a minimum energy crossing point between the reactant and the 

first transition state from anti-ferromagnetically coupled Fe(III)-O- to ferromagnetically 

coupled Fe(III)-O- in the quintet state. 

Table 3.3 Mulliken spin densities and electron configurations for reactant, TS1 and I1 in 
TET2. 

Mulliken spin density Reactant TS1 I1 

Fe (III) 3.25 4.13 4.25 

Oxyl O 0.54 0.01 0.25 

Hydroxyl O 0 -0.43 -0.86 

Hydroxyl H 0 0.04 0.01 

Electron configuration ISFe(III)-OF HSFe(III)-OAF HSFe(III)-OAF 
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The Mulliken spin density on iron-oxyl moiety (Table 3.3) in the reactant confirms 

that the intermediate spin iron coupled to oxygen ferromagnetically (consistent with the 

reactant in AlkB). The spin density on the oxygen atom of the hydroxyl group in the first 

intermediate (I1) is -0.86, indicating the existence of a beta electron in its p orbital. This 

suggests that an alpha electron from the oxygen atom of the hydroxyl group transfers to 

the p orbital of the oxyl group to form an O-H bond. However, the electron in the p 

orbital of the oxyl moiety is spin-up. Therefore, this transfer is spin-forbidden and it is 

not conducive to form the O-H bond, unless the electron configuration of the iron-oxyl 

moiety changes. 

Table 3.4 Comparison of Mulliken charge densities of important atoms involved in the 
oxidation in TET2, AlkB, ABH2. 

Mulliken spin density Fe O (Oxyl) C(1meA)/O(hmC) H(1meA)/H(hmC) 

AlkB reactant 3.26 0.54 0.00 0.00 

AlkBH2 reactant 3.20 0.61 0.00 0.00 

TET2 reactant 3.25 0.55 0.00 0.00 

AlkB I1 4.35 0.26 -0.92 0.005 

AlkBH2 I1 4.36 0.26 -0.92 0.004 

TET2 I1 4.35 0.25 -0.85 0.01 

 

The spin densities for the first transition state (TS1) shows that high spin iron(III) 

anti-ferromagnetically coupled to the oxygen. Therefore, the electron in the p orbital of 

the oxyl moiety is spin-down and can be able to form the O-H bond with the alpha 

electron of the oxygen atom of the hydroxyl group (5hmC). The change in the electron 
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configuration from the reactant to the first transition state confirms the existence of a 

crossing point between these two surfaces. These results agree with the results obtained 

for AlkB. Table 3.4 shows the comparison between spin densities of the wild type in 

AlkB and ABH2 with TET2. The difference in the spin densities of oxygen in hmC and 

carbon in 1meA is because hydrogen is abstracted from an electronegative atom in TET2. 

As discussed above, the electron configurations of two selected snapshots of T1372E 

mutant are different due to their different optimized geometry and the orientation of the 

water molecule in active site. The electron configuration in snapshot number 1 with 

endothermic reaction energy is ISFe(III)-OF. The orientation of water molecule in this 

snapshot, and consequently, its electron configuration is similar to those in the wild type. 

However, the oxidation mechanism for this snapshot is thermodynamically unfavorable 

due to its unstable product. In the snapshot with highly stable product (snapshot number 

3), the electron configuration is HSFe(III)-OAF and the mechanism is kinetically 

unfavorable. 

3.3.4  ELF/NCI analysis on critical structures 

ELF and NCI together can be used to investigate the localization of electrons and the 

interactions between molecules. ELF can indicate the positions of the electrons in the 

system and reveal the strong interactions, e.g., atomic centers, lone pairs, and covalent 

bonds. However, NCI demonstrates weaker, non-covalent interactions such as hydrogen 

bonding and van der Waals forces. The combination of these two analyses provides a 

qualitative view of the evolution of the electron structure without the need for 

complicated orbital analyses. The changes in the basin populations of the bonds 
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(V(O(hmC), H1), V(O(oxo), H1), V(C(hmC), H2), V(O(oxo), H2) and V(O(hmC), C(hmC))) involved 

with the hydrogen transfers along the pathway for the wild type-catalyzed oxidation are 

shown in Table 3.5. The basin population of O(hmC)-H1 declines from reactant to I1, while 

it increases in O(oxo)-H1. This indicates that the H atom is transferred from the hydroxyl 

group of 5hmC to the ferryl moiety, and O(oxo)-H1 bond is formed. At the TS1, the basin is 

shared by O(oxo), H1 and O(hmC) to form a three-center two-electron bond between these 

atoms. This confirms that the hydrogen atom is abstracted in this step. 

Table 3.5 Population change in V(O(hmC),H1), V(O(oxo),H1), V(C(hmC),H2), V(O(oxo),H2) 
and V(O(hmC),C(hmC)) basins along the MEP. H1 and H2 indicates first and second hydrogen 
being transferred, respectively. For TS1, the basin is shared by three atoms, indicating 
hydrogen atom is abstracted from hydroxyl moiety. 

 V(O(hmC),H1) V(O(oxo),H1) V(C(hmC),H2) V(O(oxo),H2) V(O(hmC),C(hmC)) 

Reactant 1.35 0 2.17 0 0.96 

TS1 0.5 (V(O(hmC),H1,O(oxo)) 2.16 0 0.87 

I1 0 1.18 2.21 0 0.86 

TS2 0 1.22 2.19 0 0.90 

I2 0 1.24 2.17 0 0.92 

TS3 0 1.26 2.26 0 0.95 

Product 0 1.34 0 1.35 0.97-1.14 

 

By contrast with the first hydrogen abstraction, the second hydrogen is transferred as 

a proton. At TS3, there is no shared basin between C(hmC), H2 and O(oxo). This suggests 

that there is no electron that transfers with the hydrogen atom. In addition, the 

comparison of basin populations on C(hmC)-H2 and O(oxo)-H2 in I2 and the product confirms 

that the hydrogen atom is transferred from 5hmC to Fe-hydroxyl moiety. There are two 
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basin populations on O(hmC)-C(hmC) in the product, suggesting the formation of double 

bond for 5fC. This process is also presented in Figure 3.10.  

 

 

Figure 3.10 ELF and NCI surfaces for the active site of the reactant; TS1; TS3 and 
product in the wild type TET2-5hmC/fC complex. The isovalue for ELF and NCI is 0.5. 
For the NCI surfaces, the color scale is chosen so that blue indicates relatively strong 
attraction, green indicates relatively weak interaction, and red indicates relatively strong 
repulsion in the region of non-covalent interactions. The MM region is not shown for 
clarity. 
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The NCI analysis in Figure 3.10 shows 6 blue surfaces around the iron atom, 

indicating its octahedral structure. In addition, there is an NCI surface between the oxo 

ligand and the first hydrogen being transferred. Subsequently, this surface disappears to 

form a shared ELF basins between O(hmC), H and O(oxo) atoms. As the reaction proceeds, 

the basin between H and O(oxo) forms. There is also a similar NCI surface between oxo 

moiety and the second hydrogen being transferred at the beginning of the reaction. This 

surface vanishes when the first hydrogen is transferred and forms again before 

transferring the second hydrogen. Then, it disappears again while second hydrogen is 

transferring. The second hydrogen is transferred without sharing an ELF surface between 

three atoms, suggesting a proton transfer. When water molecule forms, one blue surface 

appears between the water and the iron, showing the water is coordinated to the iron. In 

addition, an ELF surface forms on the oxygen atom of the water molecule as oxygen lone 

pair. Besides, new water forms hydrogen bond with succinate while its interaction with 

the “2nd-shell" water molecule decreases. 

3.3.5  Energy decomposition analysis on critical structures 

To gain a qualitative understanding of the effects of each residue in the MM 

environment on the QM subsystem, an energy decomposition analysis (EDA) at the 

residue level has been performed. This analysis is based on the subtraction of the average 

intermolecular interaction energy (∆E) between each residue in the MM region and the 

QM subsystem at all critical structures.159, 180-183 Figure 3.11 a-c shows the EDA results 

for TS1, TS2 and TS3 with respect to the reactant. The sign of this energy difference may 

be used to qualitatively determine the catalytic role of the residues. Positive ∆E indicates 
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that this residue should increase the reaction rate, while the reaction rate should be 

decreased with residues that have a negative ∆E.  

 

Figure 3.11 Difference of total, Coulomb and vdW energies of a) TS1, b) TS2, c) TS3 
and reactant. d) Positions of the residues obtained from (TS1/2/3 and reactant) EDA 
relative to the QM region. The residues obtained from TS1/2/3 are shown in 
blue/brown/black. The purple residues are in common for all EDA. G* is the one of the 
linkers. The QM atoms are shown in ball and stick. 

In this study, we consider the residues that have a |∆∆E| with magnitude larger than 2 

kcal/mol (Figure 3.11 and Table 3.6). EDA based on the optimized structures of the TS1 

and the reactant reveals eight residues have a |∆∆E| >2 kcal/mol. These residues include 

R1261, R1253, K1299, K1321, H1386, N1387, K1409, E1874. The EDA on the TS2 and 

TS3 indicate the following residues are involved in catalysis: K1142, T1259, R1261, 

R1262, E1279, K1321, R1381, H1386, N1387, N1403, K1409, R1896, E1923 and 

E1924. Residues R1261, H1386 and N1387 are common in all three EDA results. The 
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position of these residues in the protein are shown in Figure 3.11 d (see Table 3.6 for 

∆∆E values). This result can be used as a guide for experimental mutagenesis. 

Table 3.6 Residues with more than 2 kcal/mol difference by EDA. All values are in 
kcal/mol. 

Residue ∆∆E (TS1-reactant) ∆∆E (TS2-reactant) ∆∆E (TS3-reactant) 
K1142 - -2.6 - 
R1253 2.3 - - 
T1259 - 3.3 - 
R1261 -9.7 -15.9 -4.0 
R1262 - -5.2 - 
E1279 - - 4.4 
K1299 -6.2 - - 
K1321 2.5 - 2.1 
R1383 - -2.1 - 
H1386 3.4 3.1 4.6 
N1387 3.1 2.9 3.2 
N1403 -  2.3 
K1409 2.4 - - 
E1874 -2.3 - - 
R1896 - - 3.8 
E1923 - -2.2 -2.2 
K1924 - 2.5 - 

 

The sequence alignment for these residues are presented in Figure 3.12. For instance, 

the mutation of K1299 can significantly change the barrier since it has a large stabilizing 

impact on the TS1, compared to R1262 which has smaller stability effect on the TS2. 

Another target for mutagenesis could be the H1386 and N1387 which shows destabilizing 

effect on all three transition states. The sequence alignment (Figure 3.12) shows that 

these residues are (partially) conserved in h/m-TET1-3 homologues. Therefore, they 

could be suitable targets for mutagenesis. Hu et. al. mutated a series of the residues on 

5mC substrate,184 they showed that K1299E/S1303N significantly decreases the TET2 

enzymatic activity, while R1262A has a minor effect on the TET2 activity. Their results 
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indicate that R1261G reduces the TET2 activity, and our calculation suggests that R1261 

has a large stabilizing effect on all TSs. This high impact of R1261 on the catalytic 

activity is because of its interaction with 𝛼-KG (or NOG in the crystal structure184). The 

EDA results introduce new targets for future research on TET2 mutation. 

 

Figure 3.12 Protein sequence alignment of h/m-TET1-3 calculated using T-coffee.185 The 
residues with significant change in (de)stabilizing energy (|∆∆E| > 2 kcal/mol) are 
marked with a red arrow.  
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3.4  Conclusions 

The TET2 mediated oxidation of 5hmC has been investigated by means of QM/MM 

calculations. Based on the results of our previous molecular dynamics (MD) study on 

TET2, we performed reaction path calculations on the oxidation of 5hmC to 5fC to 

understand the source of substrate preference in the wild type and a “5hmC-stalling” 

mutant (T1372E). The calculated energy barrier of the rate-limiting step in the wild type 

for the oxidation of 5hmC to 5fC is in good agreement with other Fe/𝛼-KG dependent 

enzymes. ELF/NCI results show that the first hydrogen transfers as a hydrogen atom, 

while the second transfer involves a proton. The results also compared with available 

experimental and computational values for AlkB and ABH2. The comparison of the 

optimized structure of the reactant, product, and their corresponded electron 

configurations between the wild type and the T1372E mutant reveals that the orientation 

of the water molecule in the active site is essential for iterative oxidation. We 

investigated two possible oxidation paths for T1372E mutant and show that one path is 

kinetically unfavorable, and the other one is thermodynamically impossible. EDA 

analysis provides insights on over 18 residues that significantly impact the catalytic step 

including three residues that have been experimentally shown to impact catalysis. Our 

calculations provide new targets for mutagenesis studies of human TET2. 
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CHAPTER 4  COMPUTATIONAL INVESTIGATION OF O2 
DIFFUSION THROUGH AN INTRA-MOLECULAR TUNNEL IN 
ALKB; INFLUENCE OF POLARIZATION ON O2 TRANSPORT 

4.1  Introduction 

E. coli AlkB catalyzes the direct dealkylation of various alkylated bases in damaged 

DNA. The diffusion of molecular oxygen to the active site in AlkB is an essential step for 

the oxidative dealkylation activity. Despite detailed studies on the stepwise oxidation 

mechanism of AlkB, there is no conclusive picture of how O2 molecules reach the active 

site of the protein. Yu et al.45 proposed the existence of an intra-molecular tunnel based 

on their initial crystal structures of AlkB. We have employed computational simulations 

to investigate possible migration pathways inside AlkB for O2 molecules. Extensive 

molecular dynamics (MD) simulations, including explicit ligand sampling and potential 

of mean force (PMF) calculations, have been performed to provide a microscopic 

description of the O2 delivery pathway in AlkB. Analysis of intra-molecular tunnels using 

the CAVER software indicates two possible pathways for O2 to diffuse into the AlkB 

active site. Explicit ligand sampling simulations suggests that only one of these tunnels 

provides a viable route. The free energy path for an oxygen molecule to travel along each 

of these tunnels has been determined with AMBER and AMOEBA. Both PMFs indicate 

passive transport of O2 from the surface of the protein. However, the inclusion of explicit 

polarization shows an extremely large barrier for diffusion of the co-substrate out of the 

active site, compared with the non-polarizable potential. In addition, our results suggest 

that the mutation of a conserved residue along the tunnel, Y178, has dramatic effects on 

the dynamics of AlkB and on the transport of O2 along the tunnel. 
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4.2  Computational methods 

The initial structure for wild type E. coli AlkB in complex with DNA was taken from 

the Protein Data Bank (PDB ID: 2FDG45). Hydrogen atoms, counter ions, and TIP3P 

water molecules were added to the holo structure with the LEaP package145 from 

AMBER14.186 The final system size was 50000 total atoms with 3 counter ions. This 

system was initially equilibrated in our previous studies on AlkB.20-21 MD simulations 

were performed with ff99SB187
  and AMOEBA using the NPT ensemble.82 Simulations 

involving the ff99SB potential were performed with the PMEMD.cuda program from 

AMBER14.186
  AMOEBA simulations were carried out with an in-house, AMOEBA 

capable, development branch of AMBER based on pmemd termed pmemd.gem. All 

simulations used a 1 fs step size and a 9 Å cutoff for non-bonded interactions. The non-

polarizable simulations were run at 300 K using Langevin dynamics188
  (g  = 1 ps-1), with 

a Berendsen barostat.189 The parameters for 1-methyladenine (1meA), 𝛼-KG and O2 for 

both ff99SB and AMOEBA were developed in-house. The iron cation was approximated 

by Mg(II) parameters based on the precedent established by our previous studies on 

AlkB20-21 and TET2.16  SHAKE190 was used for all the simulations and the smooth 

particle mesh Ewald (PME) method191 was employed to treat long-range Coulomb 

interactions. 

The existence of possible tunnels for O2  transport in AlkB were determined by 

analyzing the crystal structure, as well as 250 snapshots out of a 50 ns simulation from 

the non-polarizable potential using CAVER192 as implemented in PyMOL.193 Once the 

coordinates of the tunnel were obtained, umbrella sampling194 and WHAM195-197 were 
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used to calculate the potential of mean force for the transport of oxygen along the tunnel. 

Two possible channels were obtained from CAVER analysis.198 Each of these channels 

was populated by positioning 30-40 oxygen molecules to achieve a spacing of 0.3-0.5 Å 

between adjacent umbrella windows. A harmonic potential of 10 kcal mol-1Å-2 was 

applied to restrain the motion of the oxygen molecule in each window. The PMF 

coordinate was set as the distance between the oxygen molecule and T208 (OG1) for the 

blue tunnel, and 𝛼-KG (C2) in the red tunnel. Each window was sampled for 1 ns in 

explicit solvent (TIP3P water model) at 300 K in NPT ensemble using Langevin 

thermostat and Berendsen barostat. The free energy associated with the oxygen transport 

along each tunnel were calculated using 1D-WHAM (one-dimensional weighted 

histogram analysis method) technique with bootstrapping.195-197, 199-200 All 1D-WHAM 

calculations were performed with the WHAM package.201 

The PMF was also calculated using the multipolar-polarizable potential AMOEBA. 

The use of higher-order multipoles and/or explicit polarization has been shown to provide 

accurate description of various system such as water,77, 202 organic molecules,203-204 

peptides,205 protein-ligand binding206
  and ion channels.207

  Several methods have been 

developed to include many-body polarization, such as the fluctuating charge approach,208-

209 the Drude oscillator model210-211 and atomic induced dipole methods.136, 212 AMOEBA 

combines distributed atomic multipoles (up to quadrupole) and (Tholé damped) inducible 

atomic dipoles, which have been shown to provide an accurate representation for various 

systems.76, 78, 82, 161, 204-205, 213-215 
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Umbrella sampling/WHAM calculations for the AMOEBA calculations were 

performed using the amoebabio09 potential216 using the same windows as for the ff99SB 

calculations. Various harmonic potentials (5-40 kcal mol-1Å-2) were applied to keep the 

oxygen molecules at the desired positions. Each window was sampled for 100 ps in 

explicit AMOEBA water at 300 K in the NPT ensemble using the Berendsen thermostat-

barostat. Long-range electrostatic interactions were computed employing the smooth 

particle mesh Ewald method191, 217-218 with an 8.5 Å cutoff. All PMFs were calculated 

with the WHAM program from Grossfield et al.201 Bootstrap analysis was done to 

validate the reproducibility of the data for each free energy calculation. The coordinated 

water in the primary coordination sphere of iron was deleted in these calculations to 

avoid the increase in free energies due to close contact between O2 and water molecules 

in the active site. 

Direct O2 diffusion was also investigated by running long MD simulations (500 ns) 

with the ff99SB force field (exclusively) on wild type AlkB and three mutants in the 

presence of O2 molecules. To probe for O2 delivery pathways in AlkB, 10 O2 molecules, 

corresponding to 0.03 M [O2] calculated with respect to the total simulation box volume 

of 520000 Å3, were added to the equilibrated AlkB model. This O2 concentration is 23-

fold higher than the saturated O2 concentration in water at ambient condition. This high 

O2 concentration was introduced to maximize the sampling of O2 delivery pathway(s) in 

the protein within limited time scales (500 ns). Four independent simulation systems 

were designed for wild type in which O2 molecules were initially distributed randomly 

around protein surface in the solution. Each system was visually inspected to ensure that 
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the added O2 molecules did not overlap with atoms of other molecules, and then was 

simulated for 500 ns in the NPT ensemble at 300 K using Langevin dynamics (g = 1 ps-1) 

coupled to a Berendsen barostat. Repeated simulations were performed to improve 

statistics and to provide a more accurate description of the O2 delivery pathway. 

 

Figure 4.1 a) Tunnels obtained with CAVER for the crystal structure of AlkB. b) AlkB 
active site with blue and red tunnels. 

Three–dimensional (3D) density maps representing the O2  occupancy profiles were 

calculated to identify O2  delivery pathways, using the Volmap tool as implemented in the 

VMD program.151 Root mean square deviation (RMSD), root mean square fluctuation 

(RMSF), hydrogen bond, correlation, histogram and distance analyses were performed 

using the cpptraj module available in AMBER14 suite.186 

Energy decomposition analysis (EDA) was used to calculate non-bonded inter- 

molecular interaction energies (Coulomb and VdW interactions) between selected 

residues. All EDA calculations were carried out with an in-house FORTRAN90 
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program.154-155 The average non-bonded interaction between a particular residue, W178, 

and every other residue is approximated by ∆Eint= <∆Ei>, where i represents an 

individual residue, <∆Ei> represents the non-bonded interaction (Coulomb or VdW) 

between residue i and the residue of interest, W178, and the broken brackets represent 

averages over the complete production ensemble obtained from the MD simulations. This 

analysis has been previously employed for QM/MM and MD simulations to study a 

number of protein systems.20-21, 43, 155, 157, 219 

 

Figure 4.2 a) Two main tunnels obtained with CAVER for the crystal structure of AlkB. 
Residues that define the blue (b) and red (c) tunnels. 

4.3  Results and discussion 

This section presents the results obtained from the MD simulations and analysis for 

the oxygen transport through AlkB and three W178 mutants. Subsection 4.3.1 presents 
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the results of the CAVER analysis for the crystal structure and selected MD snapshots to 

investigate the prevalence of each tunnel along the trajectory. Long MD simulations on 

wild type and W178 mutants are discussed in Subsections 4.3.2 and 4.3.3. This is 

followed by the presentation of the free energy profiles obtained from the umbrella 

sampling and WHAM calculations in Subsection 4.3.4. 

 

 

Figure 4.3 3D density man representing the O2 molecule occupancy in a) WT, b) W178Y, 
c) W178A, d) W178P. The isovalue for all density maps is 0.006. 
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4.3.1  Probability of occurrence of different tunnels in wild type AlkB 

An initial analysis of the original AlkB crystal structure, 2FDG,45
 using CAVER 

indicates the existence of four possible tunnels (Figure 4.1 a). All tunnels start from the 

surface of the protein and reach Fe(II) in the active site. The CAVER analysis further 

indicates that the blue and red tunnels are the most probable tunnels for O2 diffusion due 

to their high throughput, low curvature and short length (Table 4.1, Figure 4.2a). The 

blue tunnel is defined by residues L15, A16, A17, A19, I143, S145, F154, F156, K166, 

W178, S182, F185 and H187. The red tunnel which comprises residues H131, Q132, 

D133, L139, I143, W178, S182, R183, L184, F185, H187, and R210 is consistent with 

the proposed tunnel by Yu et al.45  Figures 4.2b and 4.2c show the residues that define the 

red and blue tunnels. Figure 4.1 b shows the position of the blue and red tunnels with 

respect to the AlkB active site. The coordinated water molecule trans to H131 occupies 

the site that would be replaced by the oxygen molecule traveling along each tunnel.220 

Given that the initial CAVER analysis is based on a static structure, further analysis was 

performed to investigate the effects of the protein motion on the predicted tunnels. 

Table 4.1 Tunnel properties for crystal structure 
Tunnel Length (Å) Bottle-neck Radius (Å) Curvature Priority-throughputs 

Blue 15.8 0.93 1.23 0.54 

Red 16.4 0.93 1.47 0.49 

Orange 18.1 0.93 1.30 0.40 

Green 31.4 0.93 1.97 0.23 

 

To this end, a short MD simulation (50 ns) was carried out on wild type AlkB and 

250 random snapshots were extracted and subjected to CAVER analysis. The results for 
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all 250 snapshots indicate that out of these samples 29.4% exhibit the availability of the 

blue tunnel compared to 28.2% occurrence of the red tunnel (Table 4.2). In addition, the 

CAVER analysis suggests that the average curvature of the blue tunnel is smaller than 

that of the red tunnel. Taken together, these results indicate that O2 molecules should be 

more easily transported through the blue tunnel. 

The CAVER algorithm simplifies the oxygen molecules and protein atoms as hard 

spheres whose sizes are approximated by van der Waals radii. The algorithm determines 

the existence of putative tunnels purely based on steric considerations, without 

considering actual intermolecular interactions. This steric nature of the calculation 

prevents any insight into the energetics of transport along the tunnel. 

Table 4.2 Number of occurrence and properties of each tunnel from 250 snapshots of MD 
simulations. 

Tunnel Number of 

Occurrence 

Average 

Length (Å) 

Average Bottled-

neck Radius (Å) 

Average 

Curvature 

Average Priority-

throughput 
Blue 77 (29.4%) 17.1 1.00 1.32 0.41 

Red 74 (28.2%) 15.8 1.01 1.42 0.45 

Other 111 (42.4%) - - - - 

Total 262 - - - - 

 

To further test the CAVER prediction, long MD simulations (500 ns) on wild type 

AlkB in the presence of 10 O2 molecules randomly positioned in the surface of the protein 

have been performed to investigate how O2 molecules travel along these tunnels. The 

results strikingly confirmed the prediction and show that the O2 molecules prefer to travel 

along the blue tunnel rather than other tunnels as described in the next subsection. 
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Figure 4.4 RMSF difference between wild type and mutants along the sampled 
trajectories for (a) W178Y, (b) W178A and (c) W178P. Residues in blue (red) denote 
longer (smaller) fluctuations in the mutant structures compared to the wild type. 

4.3.2  Long MD simulations reveal the main oxygen diffusion pathway in AlkB 

 Four independent MD simulations on wild type AlkB were performed to investigate 

the diffusion of O2 into and out of the active site. Each of the four independent 

simulations contained 10 O2 molecules and extended for 0.5 µs. During these 

simulations, we observe 5 O2 molecules diffuse into the active site on average. In all 

cases the diffusion of the ligand occurs exclusively via the blue tunnel pathway. 

Table 4.3 Intermolecular energy difference analysis between residue 178 and all protein-
DNA residues for the wild type and W178Y/A/P mutants. (b) Difference between ∆E of 
mutants and wild type. ∆E is the sum of all intermolecular interaction energies for all 
residues in each system (except water). All energies in kcal/mol. 

  a   b  

 ∆ECoul ∆EvdW ∆ETot ∆∆ECoul ∆∆EvdW ∆∆ETot 

WT -41.2±0.8 -23.7±0.4 -64.9±0.6 0 0 0 

W178Y -43.7 -21.4 -65.1 -48.5 4.4 -44.1 

W178A -41.8 -9.7 -51.5 -28.6 14.5 -14.1 

W178P -32.3 -13.8 -46.1 6.7 8.3 15.0 
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Figure 4.3a shows the 3D density map representing the occupancy profile for O2 

molecules for the wild type and three W178 mutants (see below for mutant simulations). 

This density map is an average over all four 0.5 ms trajectories. The calculated density 

maps show that the cavities occupied by O2 molecules in the wild type are consistent with 

the coordinates of the blue tunnel. The distance between the Fe(II) atom and O2 

molecules for each independent simulation are presented in Figure 4.5. Distances smaller 

than 6 Å between an O2 molecule and Fe(II) were considered as a complete entrance. In 

all wild type simulations, we observed that all oxygen molecules that diffuse into the 

active site spend a very short time close to the Fe(II) atom on average, and then they 

escape from active site and return to solution. 

4.3.3   Mutation of W178 can change the diffusion pathway 

Crystal studies on AlkB45
  show that residue W178 is located at the entrance of the 

binding cavity. Based on its location, Yu et al. suggested that Y178 could act as a gate 

along the tunnel depending on its various side chain conformations. The effect of W178 

on O2 diffusion was probed by performing MD simulations on three AlkB mutants: 

W178Y, W178A and W178P. These simulations were subjected to various analyses 

including density maps, RMSD, RMSF and energy decomposition to investigate the 

effect of the mutation on the structure and dynamics of AlkB. 

The occupancy profiles for each mutant are presented in Figures 4.3b-d. The 

occupancy profile reveals that O2 molecules in W178Y mutant diffuse through blue 

tunnel similarly to wild type. The correlation analysis by residue (Figure 4.8e) indicates 

that W178Y has a pattern more consistent with the wild type, suggesting that the 
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dynamics of this mutant are similar to that of wild type. However, distance analysis 

(Figure 4.6) indicates that O2 molecules in the W178Y mutant spend more time in the 

active site in comparison with wild type (Figure 4.5). This difference in residence time 

could be due to the difference in size and flexibility of the tyrosine side chain with 

respect to tryptophan. All systems are observed to be stable throughout the simulation 

time as per RMSD with respect to the crystal structure (Figure 4.7). 

 

Figure 4.5 Distance between O2 and Fe(II) in wild type AlkB for 4 independent 
simulations. 

The analysis of the change in fluctuation along the calculated trajectories between the 

wild type and each mutant shows striking differences. Figure 4.4a suggests that residues 

around the blue tunnel in the W178Y mutant fluctuate less than the same residues in the 
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wild type. Reduced fluctuation of these residues may explain why O2 molecules spend 

more time in the active site compared to the wild type. Energy decomposition analysis 

(EDA) was carried out to further understand residue-by-residue inter-molecular 

interactions. The EDA analysis suggests that the mutation of tryptophan to tyrosine 

changes the stability of this residue in the protein negligibly (Table 4.3a), however, the 

stability of the whole protein increases significantly (Table 4.3b). Table 4.3 b shows the 

sum of all interactions (except water molecules interactions) for each mutant in 

comparison with wild type. 

 

Figure 4.6 Distance between O2 and Fe(II) for a ) W178Y, b) W178P and c) W178A. 

Similar to the wild type and W178Y mutant, the O2 diffusion in the W178P mutant 

occurs only through the blue tunnel. However, the occupancy profile (Figure 4.3d), 
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distance analysis (Figure 4.6) show that O2 molecules spend a significant portion of the 

simulation time around the Fe(II) atom in the active site. These results suggest that the 

oxygen molecules get trapped in the active site after diffusion. In addition, EDA analysis 

reveals less stability for residue 178 in this mutant compared to wild type (Table 4.3a). 

The sum of all intermolecular interactions in this mutant compared to wild type (Table 

4.3b) suggests that the mutation of tryptophan to proline destabilizes the protein. The 

RMSF (Figure 4.4) shows that the residue at the 178 position exhibits larger fluctuations 

in the P mutant than in the wild type structure. 

 

Figure 4.7 Protein backbone RMSD for a) wild type AlkB b) W178A/P/Y mutants.  

The main pathway for oxygen diffusion in the W178A mutant is the blue tunnel. 

However, this mutant reveals a new pathway to transport O2 molecules from the surface 

of the protein into the active site (Figure 4.3c). The correlation difference plot (Figure 

4.8g) shows that residues 163 to 189 in the W178A mutant and wild type are anti-

correlated. In addition, the RMSF difference analysis (Figure 4.4b) shows increased 

fluctuation for the residues around the new pathway in the W178A mutant compared to 
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the wild type. The increased fluctuation of these residues can help to explain for 

appearance of a new pathway in the W178A mutant. 

In summary, the MD simulations indicate that the main pathway for oxygen diffusion 

in all mutants is the blue tunnel. However, the access to this tunnel can be facilitated or 

hindered by the mutation of W178, depending on the size and flexibility of the residue. 

Although these results support the importance of W178 for oxygen diffusion, 

experimental studies on this residue are needed to confirm the importance of this site. 

 

Figure 4.8 The correlation plots for a) WT, b) W178Y, c) W178P and d) W178A. 
Residue pairs with correlated motions are shown in blue, while anti-correlated motions 
are shown in red. The correlation difference plots for e) W178Y, f) W178P, and g) 
W178A compare the mutant correlation plot to that of the WT. Illustrative, regional 
changes in the single mutants are marked with boxes. 
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4.3.4  PMF calculation for O2 pathway to the active site 

As described in Subsection 4.3.2, the diffusion MD simulations suggest that the O2 

molecules diffuse to the active site through the blue tunnel exclusively, and remain in the 

active site for a short time before returning to solution. Therefore, we have calculated the 

PMFs associated with passive O2 transport through both tunnels in order to gain further 

insights for the possible reason for the tunnel preference and causes for the short 

residence times of O2 molecules in the active site.  

 

Figure 4.9 Calculated PMFs for the red and blue tunnel using the ff99SB and AMOEBA 
parameter sets. The y (x) axis in the left (right) shows the free energy calculated with the 
ff99SB (AMOEBA) parameter set. 

The calculated PMFs for the transport of molecular oxygen along the blue and red 

tunnels using the ff98SB potential are shown in Figure 4.9 (see Figure 4.10 for bootstrap 

analysis, and Figures 4.11 for histogram analysis). The PMF results suggest that the 

oxygen molecules do not have to overcome any free energy barriers and the transport into 

the active site is completely downhill by 6 kcal/mol through the blue tunnel. Conversely, 
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O2 that diffuse through the red tunnel need to overcome a barrier of 2.5 kcal/mol to reach 

the active site. 

The barrier observed along the red tunnel likely corresponds to the interaction 

between the O2 and various residues along this tunnel. For instance, residues E136, R183, 

and R210, in the red tunnel form inter-molecular interactions with O2 molecules for more 

than 30% of the simulation time. These residues are located around 9-11 Å from the 

active site and correspond to the region where the O2 molecules experience the free 

energy barrier. The interaction between these residues could make the O2 diffusion more 

difficult as the ligand molecules need to break these interactions. The calculated barrier in 

the red tunnel compared to a completely downhill energy path in the blue tunnel provides 

a possible explanation for the preference of O2 molecule diffusion through the blue tunnel 

rather than red tunnel. This prediction is also consistent with the long MD simulations, 

where O2 diffusion for wild type AlkB was observed only along the blue tunnel. 

Furthermore, the relatively small barrier in the PMF for the blue tunnel for the egress 

of O2 from the active site provides a possible explanation as to why oxygen molecules are 

observed to easily escape from the active site and go back to the solution using the 

ff99SB potential. However, the short residence time of O2 molecules in the active site 

could result in the interruption of stepwise oxidation for this enzyme. This is inconsistent 

with the available experimental and computational results on the mechanism of AlkB, 

since it is known that the rate limiting step is the oxidation of the alkyl moiety by the 

ferryl intermediate. 
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Figure 4.10 Bootstrapping analysis for blue and red tunnel with AMBER and AMOEBA 
force field. 

Therefore, a question arises regarding the accuracy of the PMF based on the non-

polarizable potential. In particular, whether this force field can provide a sufficiently 

accurate description of the inter-molecular interactions given the fact that O2 is a neutral 

molecule and therefore most fixed-charge potentials can only represent it by Van der 

Waals interactions. Moreover, it is known that molecular Oxygen is highly polarizable. 

Therefore, we performed PMF calculations on the main proposed pathway (blue tunnel) 

with the multipolar-polarizable AMOEBA potential to examine the effect of polarization 

on a highly polarizable system. 
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Figure 4.11 Histogram analysis for blue and red tunnel with AMBER and AMOEBA 
force field. 

When explicit polarization is taken into account, the reduction in free energy from the 

surface of the protein to the active site is calculated to be ≈ 50 kcal/mol (Figure 4.9) (see 

Figure 4.10 for bootstrap analysis and Figure 4.11 for histogram analysis). Once oxygen 

gets close to the active site, the molecule needs to overcome a small barrier of around 5 

kcal/mol between 2-5 Å from the active site likely due to slightly repulsive interactions 

with some residues around the Fe cation. In contrast with the results obtained with the 

ff99SB force field, this very large free energy difference between the surface and the 

active site indicates that once O2 molecules diffuse into the active site, it more than likely 



www.manaraa.com

 
76 

 

 

stays inside the protein and binds to Fe(II) to drive the oxidation forward. This large free 

energy barrier precludes the egress of molecular oxygen from the active site, and indeed, 

it provides more time for the O2 molecule to bind to the Fe(II). Although we are not able 

to perform ligand diffusion simulations based on long MD using the AMOEBA force 

field due to computational constraints, our results underscore the importance of 

polarizability in some biological systems. 

4.4   Conclusions 

 Various computational approaches have been employed to gain insights on the 

transport of molecular oxygen through intra-molecular tunnels in AlkB. Tunnel analysis 

based on steric considerations indicates the existence of two possible tunnels in AlkB. 

Ligand diffusion simulations based on long MD trajectories using a non-polarizable 

fixed- charge potential (ff99SB) show that only one of these pathways is observed during 

the simulations on the wild type enzyme. O2 diffusion in the W178Y/P mutants takes 

place through the same main tunnel (blue tunnel), while simulations on the W178A 

mutant reveal a new pathway. The modeling shows that the replacement of W178 with 

tyrosine has only a modest effect on the O2 diffusion, while replacement by proline 

creates a barrier and O2 can not readily bypass it, therefore, oxygen molecules are trapped 

in the active site. The calculated PMFs for the wild type are consistent with the diffusion 

simulations and show that the free energy associated with O2 transport along the blue 

tunnel is completely downhill, compared to a barrier of 3 kcal/mol for the red tunnel. 

However, the small barrier for O2 egress from the active site through the blue tunnel 

is inconsistent with experimental and computational results for the AlkB mechanism. 
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Complementary PMF simulations with the polarizable AMOEBA potential indicate that 

the free energy of O2 transport when electronic polarization is taken into account remains 

mostly downhill, but the barrier for egress is significantly increased by almost one order 

of magnitude. Our results provide support for the existence of an intra-molecular O2 

tunnel in AlkB, the role of a key conserved residue (Y178), and the importance of 

accounting for polarization for O2 transport simulations.  
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CHAPTER 5  DEVELOPMENT OF AMOEBA FORCE FIELD FOR 
1,3-DIMETHYLIMIDAZOLIUM BASED IONIC LIQUIDS 

Portions of the text in this chapter were reprinted or adapted with permission from: J. 

Phys. Chem. B., 118, 7156 (2014). All rights to the work are retained by the authors and 

any reuse requires permission of the authors. 

5.1  Introduction 

The development of AMOEBA (a multipolar polarizable force field) for imidazolium 

based ionic liquids is presented. Our parametrization method follows the AMOEBA 

procedure and introduces the use of QM intermolecular total interactions as well as QM 

energy decomposition analysis (EDA) to fit individual interaction energy components. 

The distributed multipoles for the cation and anions have been derived using both the 

Gaussian distributed multipole analysis (GDMA) and Gaussian electrostatic model-

distributed multipole (GEM-DM) methods.79 The intermolecular interactions of a 1,3-

dimethylimidazolium [dmim+] cation with various anions, including fluoride [F−], 

chloride [Cl−], nitrate [NO3
−], and tetraflorouborate [BF4

−], were studied using quantum 

chemistry calculations at the MP2/6-311G(d,p) level of theory. Energy decomposition 

analysis was performed for each pair using the restricted variational space decomposition 

approach (RVS) at the HF/6-311G(d,p) level. The new force field was validated by 

running a series of molecular dynamic (MD) simulations and by analyzing 

thermodynamic and structural properties of these systems. A number of thermodynamic 

properties obtained from MD simulations were compared with available experimental 

data. The ionic liquid structure reproduced using the AMOEBA force field is also 
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compared with the data from neutron diffraction experiment and other MD simulations. 

Employing GEM-DM force fields resulted in a good agreement on liquid densities (ρ), 

enthalpies of vaporization (ΔHvap), and diffusion coefficients (D±) in comparison with 

conventional force fields. 

5.2  Computational methods 

In this section, we describe the parameter fitting methodology beginning with the 

parametrization procedure by means of quantum mechanical (QM) intermolecular 

interaction and energy decomposition analysis. This is followed by the details of the QM 

intermolecular interaction calculations employed for the parametrization. Subsection 

5.2.3 describes the distributed multipoles calculation. Subsequently, subsections 5.2.4 

and 5.2.5 describe the parametrization of intra- and inter-molecular interactions. The 

optimization procedure of van der Waals parameters is described in subsection 5.2.6. 

5.2.1   Parametrization details for AMOEBA using QM EDA data 

Our parametrization procedure is modified from the conventional AMOEBA method 

by introducing the use of QM energy decomposition analysis (EDA) to improve the 

description of each available individual non-bonded term. We adopt all functional forms 

of the multipole based AMOEBA force field for the development. The functional form of 

the AMOEBA potential is given by Eq 5.1. 

𝑈01023 = 	
  𝑈5167 +	
  𝑈2693: +	
  𝑈01;<=16< +	
  𝑈>1?3 + 𝑈@13 +	
  𝑈A7B	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
                Eq5.1 

where the valence functional potentials are described by the potentials due to 

distortion of bonds (Ubond), bends (Uangle), torsions (Utorsion). These functional potentials 

have been described in detail and are beyond the scope of the current work. In this work, 
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we mainly focus on intermolecular interactions that are described by the last three terms 

of the potential: UCoul, UPol, and UvdW. 

Permanent multipoles have been fitted for each atomic site (i) based on the QM 

electron density matrix for each molecule. The fitting procedure is discussed in 

subsection 5.2.3. The multipole components include point charge (q), dipole (µ), and 

quadrupole (Q) terms. These components are represented by a polytensor MT. The 

potential energy due to the interaction of the permanent multipoles is calculated using Eq 

5.2. 
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  Eq 5.2 

where Tij is a multipole interaction matrix, M is a polytensor, and rij is the distance 

between site i and site j.  

The induced polarization is described by placing an inducible atomic polarizable 

point dipole moment, µi, on each interaction site. The induced dipoles are calculated as 

𝜇= = 	
  𝛼=𝐸=D, where αi is the atomic polarizability and Ei is the external electric field. The 

polarizability interactions are damped at short range by means of the Tholé scheme136 to 

avoid the so-called “polarization catastrophe”.75 All atomic polarizabilities were adopted 

unchanged from the AMOEBA force field. A test was performed on the sensitivity of the 

intermolecular polarization energies due to a variation of the damping parameter value α 

for the cation-cation and anion-anion pairs. Our results suggest that intermolecular 

interaction energies are insensitive to the change of the Tholé exponent over the range of 

α = 0.08-0.45. Therefore, the Tholé damping factor α with a value of 0.39 was used in 

calculations to be consistent with the AMOEBA force field. In previous studies, the 
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Tholé parameter was reduced to the value of 0.35 to get a better description of the 

polarization interactions for the canonical water dimer.79 

The last term is the potential energy that arises due to van der Waals interactions. 

These interactions can be described by three functional forms.221-224 van der Waals 

interactions are described by the buffered Halgren224 pairwise potential, as shown by Eq 

5.3. 

𝑈A7B(𝑟=D) = 	
   𝜖=D
LMN.NO
PQR
SQR
T MN.NO

O

LMN.L+

PQR
SQR
T

U

MN.L+

− 2                                                   Eq 5.3 

where εij is the potential well, rij is the separation distance between sites i and j, and 

𝑅=DN  is the minimum energy interaction distance (radius) for sites i and j. This potential 

provides a better description for interaction of noble gases in comparison with other 

available potentials.224 The van der Waals parameters for the unlike atom types are 

calculated using a combining rule.82 Validation of the developed force fields is performed 

by running a series of molecular dynamics simulations on ionic liquids and comparing 

essential thermodynamic properties with experimental data and other molecular dynamics 

simulation results. The fitting of van der Waals parameters can be performed if necessary 

using a well-developed fitting methodology.140 

5.2.2  Quantum mechanical and monomer AMOEBA calculations 

Quantum mechanical calculations were performed for a single [dmim+] cation and 

[F−], [Cl−], [NO3
−], and [BF4

−] anions using the Gaussian 09 software package.225 One-

electron, relaxed densities were calculated at the MP2-(full)/6-311G(d,p) level of theory 
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for all ions and ion pairs. Structures of isolated cations and anions were optimized using 

the same level of theory and basis set. This level of theory was chosen to remain 

consistent with the AMOEBA force field development methodology.226 The absence of 

imaginary frequencies in harmonic vibrational calculations proved that optimized 

structures correspond to local minima of the energy landscape. There are three [dmim+] 

conformers to be considered. We find the lowest energy conformer for isolated [dmim+] 

at the MP2(full)/6-311G(d,p) level by the rotational isomerization of methyl groups. The 

lowest energy conformer has its methyl hydrogens aligned in the same plane and 

direction as the hydrogen atom of a middle (C2) carbon on the imidazolium ring (Figure 

5.1). Electron-electron correlation effects were also studied at the HF, MP2, and DFT 

levels of theory. 

 

Figure 5.1 [dmim+] relative energies calculated at MP2/6-311G(d,p) level of theory. 
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We have used two methods for the determination of distributed multipoles. The first 

involves the use of GEM-DM,142-143 and the second relies on GDMA.75, 227 The reason for 

the use of two different multipole sets is to compare the newly developed GEM-DM 

multipoles to the GDMA multipoles originally employed in the AMOEBA force field. 

GEM-DM distributed multipoles were obtained by fitting to one-electron densities from 

ab initio calculations using a single optimized geometry as discussed below. Both 

analytical and numerical fitting methods are available for the fitting of the QM densities 

to Hermite Gaussians.79 The GDMA atomic multipoles were derived using Stone’s 

approach.75, 227 

Intermolecular interaction energies were calculated next as a function of 

intermolecular separation distances for all ionic pairs. Total intermolecular energies were 

calculated using the counterpoise correction to take into account the basis set 

superposition error (BSSE).228 Energy decomposition analysis was performed for each 

pair using the restricted variational space (RVS) decomposition approach229 at the HF/6-

311G(d,p) level of theory as implemented in the GAMESS230 software package. The 

Coulomb intermolecular interactions were calculated with an in-house FORTRAN90 

program that enables the use of ab initio densities for the calculation of the 

intermolecular Coulomb energies with any one-electron relaxed density matrix for each 

monomer. 

Molecular mechanics (MM) calculations were performed using both AMBER146 and 

TINKER67 simulation packages to ensure a correct reproduction of ion pair optimized 

geometries, total potential energies, and intermolecular energies from both packages. We 
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have calculated total intermolecular interaction energies and interaction energies by 

energy components. Excellent agreement between both packages was established in 

describing intra- and inter-molecular interactions for all ionic pairs. 

5.2.3  Distributed multipoles 

 The fitting methodology to obtain the distributed multipoles from GEM has been 

previously described.79, 89 In short, the density fitting method is based on employing 

auxiliary Gaussian basis functions (ABS) to fit the one-electron relaxed density. There 

are few available auxiliary basis sets such as A1, A2, and A2DG that can be used in the 

fitting.231 We use the A2DG auxiliary basis set to obtain Hermite coefficients for the 

[dmim+] cation and the A2 auxiliary basis set to obtain Hermite coefficients for anions. A 

direct mapping has been shown between the elements of the multipole tensor and 

Hermite Gaussian coefficients hctuv which enables the direct calculation of distributed 

Cartesian point multipoles from the fitted Hermite coefficients.232 In this work, the 

Hermite coefficient Λtuv has a highest angular moment of 2 (t+u+v=2), which results in 

distributed multipoles with a highest angular moment of quadrupoles. In GEM, the 

Hermite spherical Gaussians are normalized to 1, which guarantees that Cartesian 

multipoles can be calculated as defined by Eq 5.4. 

hctuv = hctuv ∫ Λtuv dr                                      Eq 5.4 

where Λ0?A = 	
   𝛼 𝜋 Z +	
   𝜕 𝜕𝑥 0	
   𝜕 𝜕𝑦 ?	
   𝜕 𝜕𝑧 A𝑒 `a;b  is the Hermite Gaussian 

function. Fitting of GDMA multipoles was fitting of GDMA multipoles was 

accomplished for cation and polyatomic anions according to the well-established GDMA 

fitting procedure.75, 227 It should be mentioned that the fitting of the GEM-DM multipoles 
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relies not only on the reproduction of molecular electronic densities but also on the 

reproduction of intermolecular energies arising from electrostatic interactions of ionic 

pairs. 

In order to enable the rotation of the multipoles, we have to define local coordinate 

frames for each atom site (i). The local frames are defined following the formalism 

employed in TINKER.67 The frames for [dmim+] cation are kept identical for both the 

GDMA and GEM-DM models, but the definitions of frames for anions vary for the 

GDMA and GEM-DM models. 

Four sets of [dmim+] multipoles have been fit to compare the overall accuracy of the 

force fields with and without intramolecular polarization effects. All four sets of 

multipoles are fit to a one-electron density matrix, as discussed in computational section 

5.2.1. Intramolecular polarization was not taken into account for the first set while fitting. 

1,3- Dimethylimidazolium was considered as a single polarizable group. These 

multipoles are referred to as GDMA (1G) and GEM-DM (1G) multipoles. The second set 

of multipoles is fit taking into account intramolecular polarization effects by defining two 

polarizable segments of [dmim+] following the procedure described elsewhere.205 The 

polarization segmentation allows us to fit permanent atomic multipoles that would 

include an intramolecular polarization contribution from the [dmim+] conformational 

dependence. The first polarizable group (segment) is defined by the imidazolium ring and 

a second group is defined by the methyl groups. These groups account for mutual 

polarization by fitting permanent multipoles upon rotation of methyl groups. The fitted 

multipoles will be further referred to as GDMA (2G) and GEM-DM (2G) multipoles. 



www.manaraa.com

 
86 

 

 

However, no mutual polarization has been applied for polyatomic anions. All anions are 

defined as a single polarizable group. The fitted multipoles vary only by the fitting 

methodology used and referred to GDMA and GEM-DM multipoles. 

5.2.4  Intramolecular interactions 

All intramolecular parameters (bond, bend, torsions, and out-of-plane deformations) 

were initially taken from the original AMOEBA78, 205, 216 force field including parameters 

for 1,3-dimethylimidazolium and anions. Atomic polarizabilities α and van der Waals (εij 

and 𝑅c=6N ) parameters were also taken from the AMOEBA force field. Specifically, 

intramolecular equilibrium parameters for bonds, bends, torsions, and out-of-plane 

deformations of 1,3-dimethylimidazolium were adopted from the 4-ethylimidazole 

compound. However, the AMOEBA force field was augmented with (C2−N−Cm−Hm) 

torsional parameters for the [dmim+] cation. A potential energy surface was generated 

using a 10° scan step fit to the MP2/6-311G(d,p) level of theory to get the best 

description of the conformational energy for this model compound. Torsional profiles are 

given in Figure 5.2 a. 

 

Figure 5.2 Conformational energy change for the (a) C2-N-C-H torsion, (b) out-of-plane 
deformation for NO3- anion. 
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Parameters for the (C2−N−Cm−Hm) torsion have been previously fit to the MP2/6-

31+G(d) level by Liu et al. for the AMBER force field.233 The torsional barrier is about 

0.4 kcal/mol higher than the one obtained in our current calculations due to the smaller 

basis set used. However, we obtain a smaller rotational barrier using the HF/6-311G(d,p) 

level than the one reported by Liu et al. Nevertheless, we were unable to get a correct 

dimer optimized geometry in the gas phase with a torsional energy barrier of 0.9 

kcal/mol. In contrast, Cadena and Maginn used C2−N−Cm−Hm with a torsional barrier 

of 0.195 kcal/mol.54 This barrier is too small in comparison with ab initio calculations. 

We adopted equilibrium constants (k0), bond lengths (r0), and angles (θ0) for [NO3
−] 

from the parameters reported by Cadena and Maginn.234 Van der Waals parameters were 

taken from amine nitrogen and amide oxygen as developed for the AMOEBA force 

field.216 The optimized geometry of the [NO3
−] anion is planar, which corresponds to the 

lowest energy state. 

Therefore, we fit the out-of-plane deformation constant (Kout) to ensure that the 

[NO3
−] molecular model stays in the planar configuration; see Figure 5.2b. A good 

description of out-of-plane energies (𝑈010 = 	
  𝐾1?0𝜒+) was obtained as compared with 

MP2/6-311G(d,p) calculations. Normal mode vibrational frequency analysis was 

performed next. The average unsigned difference was 119 cm−1. We were not able to get 

a better agreement with QM calculations. 

Intramolecular parameters for [BF4
−] were taken from the AMOEBA78, 205, 216 force 

field. Normal mode vibrational analysis was also performed for this model compound. 

Good agreement in vibrational frequencies with available experimental calculations was 
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attained using AMOEBA parameters for the B-F bond and the F-B-F angle. The 

difference in asymmetric stretch was 192 cm−1. Gas phase normal mode vibrations for 

[NO3
−] and [BF4

−] were carried out using the VALENCE tool available in TINKER. 

5.2.5   Intermolecular interactions 

In order to calculate intermolecular interaction energies for ionic pairs, we use the 

same methodology implemented for non-ionic compounds.79, 235 We systematically 

change the distance between cation center of mass and anion center of mass as shown in 

Figure 5.3 along the vector that is perpendicular to the plane of the [dmim+] ring. In the 

case of [NO3
−] and [BF4

−], we use the same pathway as that for [F−] and [Cl−] varying the 

distance between the middle nitrogen and boron as shown. The total interaction energy in 

the gas phase was calculated at the MP2(full)/6-311G(d,p) level of theory with a step size 

of 0.2 Å using the optimized monomer geometries. 

 

Figure 5.3 Schematic representations of ionic dimers, [dmim+][F-] and [dmim+][Cl-] 
(left), [dmim+][NO3

-] (middle), and [dmim+][BF4
-] (right). Arrows indicate the directions 

along which the anions were moved. 

The total intermolecular interaction energies were decomposed using the RVS 

decomposition analysis.229 Energy decomposition analysis can be performed only at the 

HF level of theory. Therefore, we plotted intermolecular potentials from calculations 
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using both MP2 and HF levels for comparison. The resulting intermolecular potential 

along with the corresponding energy components are given in Figure 5.4 for the 

[dmim+][Cl−] pair. Intermolecular potentials for other compounds are given in Figure 5.5-

5.11. A good agreement on total intermolecular interactions is established using both the 

MP2 and HF levels. Intermolecular energies are systematically underestimated (∼1 

kcal/mol) using the HF level for all pairs but [dmim+][F−] where the minimum energy is 

overestimated by ∼7 kcal/mol. We found the minimum interaction distance is at 3 Å for 

the [dmim+][Cl−] pair with a corresponding intermolecular energy of -82.81 kcal/mol. 

The intermolecular interaction distance is at 2.4 Å for the [dmim+][F−] pair with a 

minimum energy of -94.97 kcal/mol, which is more favorable than that for [dmim+][Cl−]. 

An interaction distance and a minimum energy for [dmim+][NO3−] are comparable with 

those for [dmim+][Cl−]. The minimum interaction distance is 3.3 Å for [dmim+][BF4−] 

with an energy of −79.95 kcal/mol, which is less favorable than energies for other 

compounds. 

These calculations indicate that intermolecular interactions become more favorable as 

the ion size decreases, and the interaction distances become shorter as the size of the 

anions becomes smaller as expected. The order for the intermolecular interaction energies 

can be placed as 𝐸fg=60 < 	
  𝐸>3g=60 	
  ≈ 	
  𝐸ijkg
=60 	
  < 	
  𝐸lfmg

=60 	
  .On the basis of these results, we 

expect to obtain a similar tendency on enthalpies of vaporization ΔHvap for these model 

compounds. The highest energy of vaporization is expected for the [dmim+][F−] pair, and 

the lowest energy is expected for the [dmim+][BF4
−] pair. 
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Intermolecular energies are systematically overestimated employing both sets of force 

fields; see Figure 5.4 a. The intermolecular energy minimum is overestimated by ≈ 9 

kcal/ mol using one group multipoles (1G) and by ≈ 6 kcal/mol using two group 

multipoles (2G) for the [dmim+][Cl−] ionic pair. Better agreement in the minimum 

energies is obtained for all other ionic compounds. Next, we perform energy 

decomposition analysis and plot intermolecular energies due to permanent multipoles 

UCoul, induced polarization UPol, and van der Waals interactions UvdW using both sets of 

force fields and compare those energies with the ones from the reference ab initio 

calculations. 

 

Figure 5.4 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) van 
der Waals energy for [dmim+][Cl-] employing 2 polarizable groups. 
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Intermolecular Coulomb interactions are shown in Figure 5.4b. Intermolecular 

electrostatic interactions are well described by both sets of permanent multipoles at 

medium and long range. The multipoles with intramolecular induced polarization (2G 

sets) slightly overestimate the electrostatic interactions. A better description of 

intermolecular electrostatic interactions is attained using one group based multipoles as 

compared to the reference energies. We can see a greater deviation of electrostatic 

energies at short intermolecular distances. 

 

Figure 5.5 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) van 
der Waals energy for [dmim+][Cl-] employing 1 polarizable group. 

These energy deviations arise since the current version of these force fields does not 

account for the charge penetration effects. These effects can be included by means of 

damping functions.86-87 The largest deviation between the AMOEBA force fields and the 
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ab initio reference comes from the energies due to the polarization interactions UPol; see 

Figure 5.4c. GDMA (2G) tends to underestimate the polarization energies, while the 

forced fields based on only one polarization group tend to overestimate intermolecular 

energies for all ionic pairs as compared to the energies from HF/6-311G(d,p) 

calculations. 

 

Figure 5.6 (a) Total intermolecular energies (b) Coulomb energies (c) polarization 
energies and (d) van der Waals energies for [dmim+][F-] employing 2 polarizable groups. 

The maximum energy difference between GDMA and GEMDM based force fields is 

≈ 1.2 kcal/mol. The potential energy UCoul(MP2) due to electrostatic interactions was 

calculated using an in-house FORTRAN90 program. The polarization interaction, 

UPol(HF), was calculated using the RVS method. Intermolecular energies due to van der 

Waals interactions are given in Figure 5.4d. van der Waals parameters were taken 
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directly from the AMOEBA force field. Reference van der Waals energies were 

calculated as the difference between total intermolecular energies at the MP2 level and 

the Coulomb energies due to permanent multipoles, and the energies due to polarization 

interactions as given by Eq 5.5. 

UvdW = UTotal(MP2) − UCoul(MP2) − UPol(HF)                               Eq 5.5 

A comparison of van der Waals energies using GDMA and GEM-DM reveals that 

both potentials are more attractive as compared to ab initio calculations. The van der 

Waals interactions are shifted to shorter interatomic distances for all ionic pairs except 

for the [dmim+][F−] pair; see Figure 5.4 to 5.11. A better agreement of van der Waals 

interactions is reached for [dmim+][F−] using the GEM-DM (2G) force field. However, 

the GDMA based force fields overestimate the van der Waals interactions at short and 

long interaction distances while the GEM-DM based force fields show good agreement at 

long range. 

As noted above, the total intermolecular interactions calculated with both GEM-DM 

and GDMA based force fields show good agreement with the QM reference. This is due 

to a cancelation of errors between the overestimation of the van der Waals and 

polarization terms and the underestimation of the Coulomb term at short range. 

One way to test the accuracy of the intermolecular interactions is by calculating the 

optimized geometries for the gas phase dimers. We performed geometry optimizations 

for all ionic pairs in the gas phase and compared geometries and corresponding energies 

with the ones obtained from ab initio calculations at the MP2/6-311G(d,p) level of 

theory. Almost all optimized geometries are well reproduced by both sets of force fields 
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with the exception of the [dmim+][F−] pair, which optimizes to a different geometry as 

compared with ab initio results. 

 

Figure 5.7 (a) Total intermolecular energies (b) Coulomb energies (c) polarization 
energies and (d) van der Waals energies for [dmim+][F-] employing 1 polarizable group. 

In general, the GDMA based force fields have a tendency to underestimate the 

intermolecular interactions of the gas phase dimers, while the GEM-DM based force 

fields show the opposite trend. These optimized geometries also show that the calculated 

parameters reproduce not only the potential energy surface (PES) for which they were 

parametrized but also those for other structures along the PES.  

5.2.6  Van der Waals parameter fitting 

We have previously developed a method for the efficient optimization of van der 

Waals parameters.140 This method allows the combination of QM and experimental data 
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for the optimization of van der Waals parameters by means of an active-space 

optimization approach with quadratic convergence. In the case of the ion pairs used in the 

current study, the only experimental data available is liquid density for [dmim+][Cl−].  

 

Figure 5.8 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) van 
der Waals energy for [dmim+][NO3

-] employing 1 polarizable group. 

Therefore, in this particular instance, we were unable to employ the active space 

optimization approach due to the lack of experimental data in the literature. Initially, we 

have used an original set of van der Waals parameters for [dmim+] and [Cl−] and these 

parameters were optimized to match the available experimental data. 

After scaling the interatomic radii, the liquid density at 425 K shows a marked 

improvement with respect to the experimental result (1.127 g/cm3). Liquids become 

denser at all other simulated temperatures. As can be seen in Figure 5.12, the energies 
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due to van der Waals interactions are shifted to the shorter intermolecular distances, 

making the force fields even more attractive. This shift to lower energies may be due to 

the fact that the parameters are fitted to an intermediate level of theory (MP2/6-

311G(d,p)). Recent force fields for different molecules fitted only to QM data at a higher 

level of theory have shown very good agreement with the experiment.132, 236-237 In a future 

contribution, we plan to employ a higher level of theory and more orientations for the 

ionic dimers to fit a larger set of ionic pairs. 

 

Figure 5.9 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) van 
der Waals energy for [dmim+][NO3

-] employing 2 polarizable groups. 

5.2.7  Molecular dynamics simulation methodology 

Molecular dynamics (MD) simulations were performed for each ionic liquid pair 

using the AMBER78, 238 simulation package. The AMOEBA force field was used to carry 
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out MD simulations using a cubic simulation cell with applied periodic boundary 

conditions. The ionic liquid systems were set up on a periodic SC lattice that included 

216 ionic pairs (3672-4536 atoms depending upon the system).  

 

Figure 5.10 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) 
van der Waals energy for [dmim+][BF4

-] employing 1 polarizable group. 

Energy minimization was performed using the conjugate gradient minimization 

algorithm to reduce energetic strains. Simulations were carried out in the NVT ensemble 

to heat up the system to 600 K. The cutoff radius was 8.5 Å for non-bonded and 

electrostatic interactions. Isobaric-isothermal simulations were performed next until 

steady state conditions were reached with an integration time step of 1 fs. The Beeman 

integration algorithm239-240 was employed for integrating equations of motion. Long-

range electrostatic interactions were computed employing the smooth particle mesh 
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Ewald method149, 241-242 with an 8 Å direct cutoff. The Berendsen thermostat and 

barostat189 were used to control temperature and pressure with a relaxation time of 2.0 ps. 

Sampling trajectories were generated for 8 ns. 

 

Figure 5.11 (a) Total binding energy, (b) Coulomb energy, (c) polarization energy, (d) 
van der Waals energy for [dmim+][BF4

-] employing 2 polarizable groups. 

5.3  Simulation results 

Molecular dynamics simulations were performed to demonstrate the accuracy of the 

newly developed AMOEBA force fields. Specifically, after implementing GDMA and 

GEM-DM multipoles and associated parameters, we obtain a good agreement (1% 

deviation) with the experimental result on liquid densities, ρ, after optimization of the van 

der Waals parameters for [dmim+][Cl−]. We also calculated enthalpies of vaporization, 

ΔHvap, and diffusion coefficients, D±, as a function of temperature and compared the 
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results with available MD simulation data from the literature (See Table 5.1-5.3, and 

Figure 5.13-5.14). 

 

Figure 5.12 Total intermolecular energies (a) and van der Waals energies (b) before and 
after the fitting of van der Waals parameters for [dmim+][Cl-] employing the GEM-DM 
(2G) force field. 

5.3.1  Ionic liquid volumes and density 

Volumes of ionic pairs are estimated at T = 425 K and are based on an average 

density from MD simulations. The volumes of [dmim+][F−] and [dmim+][Cl−] ion pairs 

were predicted to be 177.3 and 203.7 Å3, respectively. Larger volumes were predicted for 

[dmim+][NO3
−] and [dmim+][BF4

−] as 223.5 and 241.5 Å3, respectively; see Table 5.1. 

These results are well correlated with the anion radii where [F−] is the smallest and 

tetrafluoroborate [BF4
−] is the largest among four studied anions. The volume of [BF4

−] is 

18 Å3 larger than the volume of [NO3
−] and 37.8 Å3 larger than that of [Cl−]. 

Comparison of the MD simulation results with the experiment for liquid densities of 

[dmim+][Cl−] is given in Figure 5.13. The only available experimental data for the ionic 

liquid studied herein is for the liquid density of [dmim+][Cl−] as mentioned above. Using 

the original van der Waals parameters, liquid densities of [dmim+][Cl−] are 4% less than 

the experimental value at 425 K (see Figure 5.13a). However, after the van der Waals 
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parameters are scaled, the GEM-DM (2G) force field shows very good agreement with 

the experiment with the error below 1%, as shown in Figure 5.13b and Table 5.1. 

Table 5.1 Liquid volume and densities at T = 425 K Liquid densities. The density value 
in parentheses corresponds to data after scaling of van der Waals parameters. 

 V (Å3) 𝜌(g/cm3) 
ILs GDMA(2G) GEM-DM(2G) GDMA(2G) GEM-DM(2G) exp 

[dmim+][F-] 174.7 177.3 1.105 1.087  
[dmim+][Cl-] 203.8 203.7 1.082 1.118 (1.127) 1.123 

[dmim+][NO3
-] 224.0 223.5 1.179 1.181  

[dmim+][BF4
-] - 241.6 1.370 1.265  

 

Simulation results for other ionic liquids are in good agreement with the results from 

other MD simulations 243 for ionic liquids with the greater molecular volume cations. For 

instance, a liquid density of 1.198 g/cm3 was predicted from simulations for 

[dmim+][BF4
−], while a density of 1.206 g/cm3 was predicted from experiment for 

[emim+][BF4
−] at 393 K. 

 

Figure 5.13 Liquid densities for [dmim+][Cl-] employing GDMA and GEM-DM force 
fields (a) before and (b) after the fitting of van der Waals interactions. 

We predict the liquid density for [dmim+][BF4
−] at 400 K to be 1.284 g/cm3. The 

resulting difference of 6% can be ascribed to the larger volume of the [emim+] cation. 
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The liquid density of [bmim+][NO3
−] was reported to be 1.092 kcal/mol at 393 K.74 MD 

simulations showed the liquid density to be 1.198 kcal/mol for [dmim+][NO3
−] at 400 K 

consistent with the change in molecular volume of the cation as above. Some variance in 

liquid densities is observed between our various multipolar force fields based on the 

different multipoles or number of polarization groups (see Table 5.1). The maximum 

deviation can be as large as ≈ 10%. The density calculated in [dmim+][BF4
−] with GDMA 

and GEM-DM shows a significant difference. The Figure 5.19 shows two snapshots from 

MD simulation for this system using GDMA and GEM-DM that can explain the 

difference in densities. 

 

Figure 5.14 MD simulation results for liquid densities using GDMA and GEM-DM force 
fields at various temperatures. 
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5.3.2  Intermolecular structure 

Liquid structures of ionic liquids are usually compared to X-ray98 scattering or 

neutron244 diffraction experimental data. In particular, interionic correlations are well 

described by radial distribution functions and can be compared with the structural factor 

S(Q) obtained from neutron diffraction.244 Radial distribution functions (RDFs) were 

calculated for the four ionic liquids at T = 475 K. A summary of these structures for 

[dmim+][Cl−] is shown in Figure 5.15. These figures include cation-cation (C2-C2), 

cation- anion (C2-Cl−), and anion-anion (Cl−-Cl−) interatomic correlations. 

 

Figure 5.15 Radial distribution function for (a) cation-cation (b), anion-anion (c), and 
cation-anion for [dmim+][Cl-] employing GDMA and GEM-DM multipole force fields. 
(d) The coordination number n(r) is given for the cation-anions coordination shell. 
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Qualitatively similar results were obtained for all ionic liquids studied (Figure 5.16-

5.18). A typical correlation is observed for the ionic liquid structures as compared to the 

RDFs from other molecular dynamics simulations.54-55, 60 The first peak of the 

coordination shell is shifted to longer distances as the ionic pairs change from 

[dmim+][F−] to [dmim+][BF4
−]. These results are in good agreement with the results from 

gas phase optimized geometries. As the size of the anions increases, the intermolecular 

equilibrium distance increases for the dimer optimized geometries. 

 

Figure 5.16 Radial distribution function for (a) cation-cation (b), anion-anion (c), and 
cation-anion for [dmim+][F-] employing GDMA and GEM-DM multipole force fields. (d) 
The coordination number n(r) is given for the cation-anions coordination shell. 
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Figure 5.17 Radial distribution function for (a) cation-cation (b), anion-anion (c), and 
cation-anion for [dmim+][NO3

-] employing GDMA and GEM-DM multipole force fields. 
(d) The coordination number n(r) is given for the cation-anions coordination shell. 

There is not a significant difference in C2-C2 radial distribution functions that were 

calculated for two sets of the force fields. The GEM-DM (2G) force field resulted in less 

structured correlations, as indicated by a smooth interatomic curve in comparison with 

RDF curves using other force fields (see Figure 5.15a). Other force fields show a 

correlation peak at 4.0 Å. Similar structures were obtained from ab initio molecular 

dynamics simulations.60 The first (C2-C2) correlation peak can be found at a distance of 

6.2 Å. The rg (C2-C2) radial distributions are in good agreement with the structural model 

that was fit to the data from neutron diffraction experiments244 and other molecular 

dynamics simulation results.60 
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Figure 5.18 Radial distribution function for (a) cation-cation (b), anion-anion (c), and 
cation-anion for [dmim+][BF4

-] employing GDMA and GEM-DM multipole force fields. 
(d) The coordination number n(r) is given for the cation-anions coordination shell. 

Despite the difference in the description of charge densities for partial point charges 

vs atomic multipoles, the structural differences are negligible in these particular 

correlations. Similar tendencies are shown for the (Cl−−Cl−) anion−anion interatomic 

correlations. The next structure is the cation-anion (C2−Cl−) radial distribution; see 

Figure 5.15c. Sharper peaks are obtained using the GDMA based force fields, again 

indicating more structured correlations in comparison with the GEM-DM (2G) force 

field. The first peak of the radial distribution is at a distance of 3.5 Å. These results are 

well correlated to gas phase optimized geometries for the dimers of ionic liquids. The 

first peaks for the [dmim+][F−] and [dmim+][BF4
−] are at interatomic distances of 3.0 and 
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3.9 Å, respectively. Qualitatively similar two peak distributions were obtained from 

molecular dynamics simulations of [bmim+][PF6
−] at 298 K.95 The results indicated that 

the first peak is located at 4.0 Å interatomic distance. We also calculate the coordination 

number n(r) by integrating the C2-Cl− radial distribution function. The coordination shell 

is defined by the dotted red line. It can be seen that the [dmim+] cation is coordinated by 

two anions on average. If we define the coordination shell at the distance of second 

minimum, then we can see that the [dmim+] cation will be coordinated by six to seven 

anions depending upon the force field and anion types. 

 

Figure 5.19 Two snapshots from MD simulations for liquid structure of [dmim+][BF4
-] at 

T=475 K using (a) GDMA and (b) GEM-DM force fields. Green molecules are [BF4
-] 

and gray ones are [dmim+]. 

5.3.3  Enthalpy of vaporization 

We calculated the heat of vaporization to estimate the strength of intermolecular 

interactions for ionic pairs. The enthalpy of vaporization is calculated as the energy 

required to bring an ionic pair from the liquid to the gas phase. Gas phase simulations 
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were carried out using stochastic molecular dynamics simulations of a single ionic pair at 

425 K. Making an assumption of an ideal gas behavior, the enthalpy of vaporization was 

estimated using the following relation. 

ΔHvap = ΔE + ΔPV = ΔE	
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  Eq 5.6 

where ΔE is the difference between potential energies from gas (−106.8 kcal/mol) and 

liquid phases (−141.9 kcal/mol) and ΔPV is the volume difference at constant pressure. 

Enthalpies of vaporization are listed in Table 5.2. Higher energies of vaporization 

correspond to the ionic liquids with anions of smaller radii, indicating stronger 

intermolecular interactions. 

Table 5.2 Enthalpy of vaporization ∆Hvap at T =425 K. The enthalpy value in parentheses 
corresponds to data after scaling of van der Waals parameters. a Reference 233 T =423 K. 

 ∆Hvap (kj/mol) 

ILs GDMA(1G) GDMA(2G) GEM-DM(1G) GEM-DM(2G) simulation 

[dmim+][F-] 175.7 172.2 168.2 168.5  

[dmim+][Cl-] 159.4 157.0 154.6 145.3 (175.0) 187.1a 

[dmim+][NO3
-] 169.4 167.1 164.4 162.4  

[dmim+][BF4
-]   147.3 139.8  

 

These results are consistent with the results for other pairwise potentials. These 

potentials predict more favorable energies for [dmim+][F−] by 13 kJ/mol than for 

[dmim+][Cl−] or [dmim+][NO3
−] and by 15 kJ/mol in comparison with [dmim+][BF4

−]. 

The GDMA based force fields resulted in higher energies of vaporization compared 

to the GEM-DM based force fields. These results can be referred to the difference in 

describing van der Waals interaction energies. The GEM-DM based force field has a 
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better agreement on van der Waals interactions with the quantum chemistry results, while 

the GDMA force field overestimates van der Waals interactions by ≈ 2 kcal/mol. 

The calculated enthalpy of vaporization for [dmim+][Cl−] ionic liquid with GEM-DM 

(2G) is 145.3 kJ/mol, which is significantly lower than the result of 187.1 kJ/mol at 423 

K from simulations using point charges. After the scaling of van der Waals parameters, 

the calculated enthalpy of vaporization is 175.0 kJ/mol, which is 29.7 kJ/mol more 

favorable. This error might arise due (at least in part) to intermolecular energy deviations 

in electrostatic and polarization interactions. 

Table 5.3 Intermolecular van der Waals parameters for N-Cl-, C-Cl- and H-Cl- before and 
after the fitting.  

  Before fitting After fitting 

Atom type pair Atom class pair Rmin (Å)  𝜀 (kcal/mol) Rmin (Å)  𝜀 (kcal/mol) 

N-Cl- 62-12 3.942 0.174 3.842 0.174 

C-Cl- 63-12 3.970 0.169 3.870 0.169 

H-Cl- 64-12 3.740 0.599 3.640 0.599 

 

However, the empirical adjustment of van der Waals parameters can also have a 

significant influence on the strength of intermolecular interactions (see Table 5.3). An 

increase in enthalpy of vaporization was predicted to be ≈ 4.0 kJ/mol per one CH2 group 

from simulations of imidazolium based ionic liquids. Extrapolation of simulation results 

for [emim+] and [bmim+] with [BF4
−] at 298 K would result in an enthalpy of 

vaporization of ≈ 130 kJ/mol for [dmim+][BF4
−]. This value would be too low. 

Nevertheless, [dmim+][BF4
−] ionic liquid is more likely to be in a crystalline state at 298 
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K. We also calculated the enthalpy of vaporization at 400 K for [dmim+][BF4
−] obtaining 

148 kJ/mol employing the GEM-DM force field. 

5.3.4  Ion self-diffusion coefficients 

The self-diffusion coefficient is another liquid property that reflects the quality of the 

force fields implemented in molecular dynamics simulations. The mobility of ionic 

species depends on many parameters including the geometrical structure, ion size, charge 

delocalization, and strength of intermolecular interactions.56, 59 A minor effect has been 

observed on the ion self-diffusion coefficient due to a change in a conformational barrier 

(C2−N−C−C).56 Faster ionic diffusion is also achieved using polarizable force fields in 

comparison with nonpolarizable ones. 

Inclusion of many body interactions speeds up the ion diffusion. Here, we study the 

influence of multipolar force fields on self-diffusion coefficients of ionic species. We 

compare GDMA and GEM-DM based force fields with available simulation and 

experimental data. The ion self-diffusion coefficients were calculated using the Einstein 

relation.245 

𝐷± = 	
   lim0→}
~��	
  (0)±

�0
                            Eq 5.7 

where MSD±(t) is the mean square displacement of the molecule center of mass, t is 

the time, and ⟨ ⟩ defines an ensemble average. During the molecular dynamics 

simulations, the ions moved around ≈ 1000 and ≈ 4000 Å2 over the production runs 

corresponding to 400 and 475 K, respectively. 

This indicates that the diffusion regime has been reached, since the mean square 

displacement of an ion is clearly much larger than two ionic radii of gyration (Rg ≈ 2.79 
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Å). We fit the linear equation (m*t+c) to the mean square displacement (MSD(t)) in the 

diffusive regime from the production trajectories. Production trajectories were generated 

for over 8 ns. Calculated self-diffusion coefficients for the [dmim+] cation and various 

anions are given in Figure 5.20. The trends in the self-diffusion coefficients are well 

correlated with the enthalpies of vaporization. 

 

Figure 5.20 Comparison of self-diffusion coefficients < 𝐷± > using the GEM-DM (2G) 
force field. Average self-diffusion coefficients are calculated for [dmim+][F-],  
[dmim+][Cl-], [dmim+][NO3

-], and [dmim+][BF4
-]. 

Borodin et al. have shown a correlation between enthalpy of vaporization and 

diffusion coefficients for a number of ionic liquids.59 We get similar relations, as faster 

diffusion rates are obtained for [dmim+][NO3
−] with lower enthalpy of vaporization in 

comparison with the [dmim+][F−] ionic liquid. 

However, we obtained lower diffusion rates for [dmim+][BF4
−] in comparison with 

[dmim+][NO3
−] despite having a lower enthalpy of vaporization. These results can be 

attributed to the geometry of [BF4
−]. Previous studies have shown that the geometries of 

ions do have an impact on diffusion rates due to their weaker or stronger ordering.56 
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The difference in diffusion rates between cations and anions is not significant. 

Diffusion rates reported by Borodin et al. for [emim+][BF4
−] using a polarizable force 

field 74 are somewhat similar to [dmim+][BF4
−] using multipolar force fields. Therefore, 

the anisotropy of electrostatic interactions did not have a significant effect on the overall 

diffusion rates becoming comparable with the rates that result from employing partial 

charge based polarizable force fields. 

5.4  Conclusions 

We have developed AMOEBA polarizable force fields, that employ higher order 

multipoles to describe electrostatic interactions, for imidazolium based ionic liquids. The 

multipoles obtained by both the GDMA and the GEM-DM methods well describe 

intermolecular pair electrostatic interactions as compared to the energies from EDA 

analysis at medium and long range. A good description of the gas phase dimer geometries 

is also obtained without any empirical adjustments of the multipoles, atomic 

polarizabilities, or van der Waals parameters for all ionic liquids but [dmim+][Cl−]. The 

use of GDMA and GEM-DM multipoles in the newly developed AMOEBA force fields 

has shown initially a 4% deviation from experimental liquid densities ρ for [dmim+][Cl−]. 

The corresponding enthalpy of vaporization ΔHvap is 145.3 kJ/ mol. A limited number of 

experimental data is available for [dmim+][Cl−]. Therefore, empirical adjustments of the 

van der Waals parameters have been carried out only to experimental (ρ  = 1.127 g/cm3 ) 

for [dmim+][Cl−] and an enthalpy of vaporization ΔHvap of 175 kJ/mol after the 

optimization of the van der Waals parameters for this ion pair. Overall results indicate 

that the implementation of the GEM-DM (2G) force field has resulted in a good 
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agreement in intermolecular energies as compared to QM calculations for all ionic liquids 

except for [dmim+][Cl−]. Thermodynamics and transport properties of the studied ionic 

liquids are in reasonable agreement with available data making the GEM-DM (2G) force 

field a good model to simulate 1,3-dimethylimidazolium based ionic liquids.  
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CHAPTER 6  COMPUTATIONAL CHARACTERIZATION OF 
PYRROLIDINIUM BASED IONIC LIQUID FOR ELECTROLYTE 
APPLICATION 

6.1  Introduction 

The development of Li ion batteries for energy storage has received significant 

attention. The synthesis and characterization of electrolytes in these batteries is an 

important component of this development. Ionic liquids (ILs) have been proposed as 

possible alternatives for electrolytes in these devices. The accurate determination of basic 

thermophysical properties of these solvents are vital for determining the applicability of 

these solvents as electrolytes. Here, we present the computational characterization of 

thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first 

step to investigate the possible applicability of this class of ILs for Li ion batteries. 

6.2  Computational methods 

6.2.1  Parameter determination 

The accuracy of the parametrization of a force field may be verified by the calculation 

of three sets of molecular data: (i) molecular geometry and intramolecular energies, (ii) 

intermolecular potential and (iii) bulk thermodynamic and structural properties. Most 

classical force fields are comprised of bonded and non-bonded parameters. In our model, 

the bonded terms are taken directly from AMOEBA without any adjustment,78, 216 

whereas the non-bonded terms, described by Eq. 5.1, have been fitted to reproduce 

Coulomb, polarization and the Van der Waals energies based on QM energy 

decomposition analysis (EDA). 
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We first calculated the total inter-molecular, Coulomb, polarization and Van der 

Waals energies using quantum mechanics as a reference for fitting our parameters. Total 

inter molecular energies were calculated using the counterpoise correction to take into 

account the basis set superposition error (BSSE)246  at the MP2/6-311G(d) level for 

dimers. The inter molecular polarization interactions for each pair were calculated using 

the restricted variational space (RVS) decomposition approach247  at the HF/6-311G(d) 

level of theory as implemented in GAMESS.248-249  An in-house FORTRAN90 program 

that uses ab initio monomer electron densities was employed to calculate the Coulomb 

inter molecular energies for each dimer. Finally, the Van der Waals energies were 

obtained by subtracting the Coulomb and polarization energy from total intermolecular 

energy for each dimer, as described in Eq. 5.5. 

Briefly, the non-bonded parameters in the AMOEBA potential include polarization, 

Van der Waals and Coulomb terms. The polarization energy is calculated by inducible 

atomic dipoles on each interaction (atomic) site. Here, each induced dipole is obtained by 

𝜇=,a=67 = 	
  𝛼=𝐸= where 𝛼= is the atomic polarizability and 𝐸=  is the external electric field 

generated by both permanent multipoles and induced dipoles. The Tholé damping 

function 75, 136 is employed to avoid the “polarization catastrophe” at short range. 

In this study, the intra molecular polarization is also taken into account for spirocyclic 

pyrrolidinium.216 Since spirocyclic pyrrolidinium is not a planar molecule, the changes in 

each ring of this molecule could change the electron density distribution of the whole 

molecule. Hence, two sets of parameters have been developed: 1) One with no intra 

molecular polarization for [sPyr+], i.e. 1 polarization group, termed 1G; and 2) One with 
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intra molecular polarization in [sPyr+] where each ring, and the central nitrogen atom 

were polarized separately, i.e., three polarizable groups (3G). The Van der Waals 

potential energy is described by the buffered Halgren pairwise potential (see Eq. 5.3).82 

Finally, distributed atomic multipoles are used to describe the electrostatic (Coulomb) 

interactions. In this case, following our previous work (Chapter 5), the distributed 

multipoles obtained from the fitting of quantum mechanical (QM) electronic density via 

the GEM procedure are employed. The Hermite coefficients and associated distributed 

multipoles (GEM-DM) up to quadrupoles on each atom for each monomer (in the 

optimized geometry) were obtained using relaxed electronic densities for the monomers 

calculated at the MP2/6-311G(d) level in the GEM fit program.79 

The accuracy of the fitted GEM density is tested by comparing the intermolecular 

Coulomb interaction calculated with GEM, with its QM counterpart from RVS.248 In our 

previous work,76 the GEM densities were fitted as a function of the change in a 1D scan 

along the distance between the dimers. This leads to less accurate sampling for all the 

possible interactions in the bulk. Hence, in this study, our fitting methodology has been 

modified, and instead, for this work the GEM densities have been fitted using a series of 

random dimers. 

The optimization of the GEM densities and associated distributed multipoles for 

sPyr+ and BF4
- have been optimized separately by calculating the intermolecular 

Coulomb interaction of each ion with a single water molecule. The GEM densities and 

distributed multipoles for the water fragment have been previously fitted and reported in 



www.manaraa.com

 
116 

 

 

our previous paper.77 Once the densities and multipoles for the ions were optimized, the 

intermolecular interaction between the cation and anion was used to validate the fit. 

One additional advantage of performing the RVS calculations for the random dimers 

is that this provides a QM reference for each non-bonded term in the intermolecular 

interaction. Thus, the polarization and Van der Waals terms are also optimized by 

comparing to their RVS counterparts as described above.77, 89 Once all parameters for the 

new molecules have been fitted by comparing to QM data, the total intermolecular 

energies for the [sPyr+][BF4
-] dimers are compared with counterpoise corrected total 

intermolecular interactions obtained with the Gaussian09 package.162-163 The inter 

molecular, Coulomb, polarization, Van der Waals and total energies using the optimized 

parameters for a series of random dimers of [sPyr+][BF4
-] were obtained with the analyze 

module available in TINKER.163 

6.2.2  MD simulation details 

MD simulations were carried out in the AMBER12 simulation package,186 using the 

AMOEBA/GEM-DM force field. The MD simulations were performed using an 

orthorhombic simulation cell with periodic boundary conditions. The calculated system 

included 216 dimers. For the Li-doped system 22 spirocyclic pyrrolidinium cations were 

replaced with Li+
 ions to make a mixture of 10% Li ion doped into the IL. All systems 

were minimized with 1000 conjugate steps, and heated up to 600 K to make sure they are 

in liquid phase. Subsequently, all systems were cooled down to the desired temperatures. 

The productions were carried out in the NPT ensemble with an integration time step of 1 

fs. Long-range electrostatic effects were computed employing the smooth particle mesh 
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Ewald method217-218 with an 8 Å direct cutoff. Sampling trajectories for neat IL were 

generated for 10 ns, and for Li salt doped mixture for 20 ns. 

Calculated properties from the generated ensembles include density (𝜌 ), heat of 

vaporization (Hvap), diffusion coefficient (D), and radial distribution functions (RDFs). 

The density and volume data are obtained directly from MD outputs. The heat of 

vaporization, which is an estimation of the inter-molecular interaction strength of ionic 

pairs, is calculated using Eq. 5.6. where ∆𝐸 is the difference between potential energy in 

gas and liquid phase. The enthalpy of vaporization is calculated as the energy required to 

take an ionic pair from the liquid to the gas phase. Gas phase simulations were carried out 

using stochastic molecular dynamics simulations of a single ionic pair at each 

temperature using the dynamic module in TINKER.163 

The self-diffusion coefficient is another liquid property that reflects the quality of the 

force fields implemented in MD simulations. The mobility of ionic species depends on 

many parameters including the geometric structure, ion size, charge delocalization, and 

strength of intermolecular interactions. The ion self-diffusion coefficients were calculated 

using the Einstein relation (Eq. 5.7). 

Liquid structures of ionic liquids are usually compared to X-ray scattering11 or neutron 

diffraction experimental data.244 In particular, inter-ionic correlations are well described 

by radial distribution functions and can be compared with the structural factor S(Q) 

obtained from neutron diffraction. Radial distribution functions (RDF) were calculated at 

different temperatures for Cation-Cation, Anion-Anion and Cation-Anion pairs. 
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6.3  Results and discussion 

6.3.1  Parameter fitting 

In order to fit the multipoles for each molecular fragment, the same methodology 

implemented for nonionic compounds was used as described previously.77 We randomly 

generated thirty dimers of cation+water and twenty-five dimers of anion+water, and 

calculated the Coulomb energies for each dimer. The Coulomb energies are calculated 

with GEM, GEMDM and QM (from the relaxed QM densities of the monomers). 

 

Figure 6.1 Coulomb energies calculated for cation/anion+water dimer using GEM, GEM-
DM and QM. 
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Figure 6.1 shows the comparison of Coulomb energies calculated for spirocyclic 

pyrrolidinum+water and tetrafluoroborate+water using GEM and GEM-DM with full 

QM. As expected, the Coulomb energies calculated with the full GEM densities are well 

correlated with QM energies. Conversely, this correlation decreases when multipoles 

(GEM-DM) are employed due to the penetration error. 

 

Figure 6.2 Total and Coulomb energies calculated for [sPyr+][BF4
-] dimers in MM and 

QM. 

Once the multipoles for the ions had been obtained, intermolecular interaction 

energies were determined for seventy seven random dimers of [sPyr+][BF4
-] using QM 

EDA as a reference and the new force field using both sets of parameters (with (3G) and 

without (1G) intra-molecular polarization for [sPyr+]. The total interaction energy in the 

gas phase was calculated at the MP2(full)/6-311G(d) level of theory. The total inter 
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molecular interaction energies were decomposed using the RVS247 decomposition 

analysis. The Figures 6.2 and 6.3 shows the decomposed energies for [sPyr+][BF4
-]. 

 

Figure 6.3 Polarization and vdW energies calculated for [sPyr+][BF4
-] dimers in MM and 

QM. 

As can be observed, both sets of parameters provide good agreement for total 

intermolecular interactions. The correlation between QM and MM energies for both sets 

of force fields are very similar, therefore, MD simulations were performed with both sets 

of force fields to find out which one describes the behavior of the system better and in 

more agreement with experimental data. 
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6.3.2  Density 

The density of neat [sPyr+][BF4
-] was calculated for a range of temperatures between 

300-500 K as shown in Figure 6.4. Only a small change in density between 400-450 K is 

observed, however, the density plot shows a significant change in density between 450-

453 K. This change seems to correspond to a phase change of the system. Interestingly, 

subsequent DSC results show that the melting point for [sPyr+][BF4
-] is within this 

temperature range as described below.  

 

Figure 6.4 Densities and diffusion coefficients calculated for [sPyr+][BF4
-] with 1 and 3 

polarizable groups for 300 to 500 K. 

The density and volume using the parameters with 3 polarizable groups at 450 K is 

1.15 kg/m3
 and 308.12 Å3, respectively, compared with 1.09 kg/m3

 and 325.06 Å3
 at 453 

K. The density decreased by 6% from 450 K to 453 K. The densities at 450 K and 453 K 

obtained with the other parameter set (1G) are 1.19 kg/m3
 and 1.16 kg/m3, which shows 

the density with no intra molecular polarization decreased by 2:8%. Thus, the change in 

the density is larger when using 3 polarizable groups in comparison with 1 polarizable 

group, with both parameter sets suggesting a phase transition in this temperature range. 
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To further investigate the applicability of these newly designed electrolytes in Li ion 

batteries, a system was created where 10% Li ions were doped in the ionic liquid 

simulation box to observe the changes in thermodynamic properties of our system. 

 

 

Figure 6.5 Densities and diffusion coefficients calculated for neat IL and [10% Li+][BF4
-] 

-[90% sPyr+][BF4
-] with 1 and 3 polarizable groups for 300 to 500 K. 

Overall, the density of the mixture is 2-4% higher than the density in the neat IL for 

all the temperature except at 450 K (or at 430-450K) using both sets of force fields 

(Figure 6.5). In addition, a significant change in density (5.4% and 3.1% for 3G and 1G, 

respectively) between 400-450 is observed for the mixture. This change may correspond 

to the phase change of the mixture at a slightly lower temperature in comparison with 
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neat IL. The comparison of the calculated densities with 1 and 3 polarizable groups for 

the Li-doped [sPyr+][BF4
-] IL is presented in Figure 6.6. The density values calculated 

without intra-molecular polarization (1G) is larger than those values using 3 polarizable 

groups at all temperatures. 

6.3.3  Enthalpy of vaporization 

The enthalpy of vaporization is calculated as an estimation of the strength of inter-

molecular interactions for ionic liquid. The heat of vaporization energies were calculated 

at T=300-500 K with both sets of force fields. Table 6.1 shows the enthalpies of 

vaporization at different temperatures. 

 

Figure 6.6 Densities and diffusion coefficients calculated for [10% Li+][BF4
-]-[90% 

sPyr+][BF4
-] with 1 and 3 polarizable groups for 300 to 500 K. 

Gas phase energies presented in Table 1 are calculated for a single dimer using 

dynamic module in TINKER and bulk energies are obtained directly from MD 

simulations in different temperatures. As seen in Table 6.1, the heat of vaporization 

values obtained with the 3G parameter set are bigger than the values obtained with the 

1G force field. These results suggest that taking the intra-molecular polarization into the 
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account results in stronger inter-ionic interactions in comparison with the model without 

intra molecular polarization. 

Table 6.1 Heat of vaporization for [sPyr+][BF4
-] in kcal/mol. 

T 
AMOEBA/GEM-DM (1G) AMOEBA/GEM-DM (2G) 

gas bulk ∆Hvap gas bulk ∆Hvap 

300 -69.06 -104.21 -67.94 -110.4 -180.58 -108.61 

350 -69.94 -99.14 -63.78 -106.53 -176.71 -105.01 

400 -60.42 -93.62 -59.19 -101.42 -172.14 -99.83 

450 -56.91 -93.63 -55.58 -97.18 -167.61 -95.51 

453 -55.91 -87.65 -54.61 -97.16 -166.13 -95.49 

475 -54.91 -84.94 -53.57 -95.57 -163.62 -93.87 

500 -52.22 -81.98 -50.84 -92.84 -160.74 -91.10 

 

6.3.4  Diffusion coefficients 

Self-diffusion coefficients for [sPyr+][BF4
-] using AMOEBA/GEM-DM at T=300-

500 K are shown in Figure 6.4 for the 3G set. The jump between 450 K and 453 K 

provides further support for the phase change at this temperature. The average diffusion 

coefficients for anion and cations (D) at 450 K is 0.07×10-5 cm2s-1, and at 453 K is 

0.16×10-5 cm2s-1. Faster ionic diffusion is also achieved using the 3G potential in 

comparison with the non intra-polarizable parameter set (Figure 6.4). This suggests that 

the inclusion of a better description of many body interactions speeds up the ion diffusion 

for this system. 
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Figure 6.7 Diffusion coefficients for cations and anions for neat IL and [10% Li+][BF4
-]-

[90% sPyr+][BF4
-] with one and three polarizable groups. 

The average diffusion coefficients of [10% Li+][BF4
-] 90%sPyr+][BF4

-] for the Li-

doped mixture at T=300-500 K using 3 polarizable groups are presented in Figure 6.5 and 

6.7. The significant change observed at 450 K for the neat IL shifts to lower temperature 

in the mixture. In addition, the ions diffusion in the mixture is very similar to the neat IL 

at lower temperatures. However, ions diffuse slower in the Li-doped mixture in 

comparison with neat IL at higher temperatures (except around 450 K), due to stronger 

inter ionic interactions between the Li cations and the anions. Conversely, the diffusion 

coefficients at 430-450 K are slightly larger than their neat IL counterparts at the same 
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temperature (2.2 % higher at 450 K), which is in good agreement with the lower density 

of mixture at these temperatures. 

The diffusion coefficients calculated using the 1G parameter set for the mixture and 

its comparison to neat IL are presented in the Figure 6.5 and 6.7. Conversely, the ions 

diffuse faster in the 10% Li+/IL mixture than in the neat IL when the 1G parameter set is 

employed. This may be due to the reduced accuracy in the description of the many-body 

effects. 

6.3.5  Radial distribution function 

The RDF for the Anion-Anion (B-B), Anion-Cation (B-N) and Cation-Cation (N-N) 

pairs for the neat IL in all the tested temperatures (300-500 K) using the 3G parameter set 

are depicted in Figure 6.8. A small peak at 4 Å is observed for the B-B RDF at 300 K and 

350 K, which is correlated to a close distance between [BF4
-] ions at these temperatures. 

 

Figure 6.8 Radial distribution function for [sPyr+][BF4
-] with three polarizable groups. 

This peak is not observed at higher temperatures due to the increase in ion distances 

and the phase transition of the IL. The second shell (at 8 Å) of the Anion-Anion RDF 

shows that the largest peak corresponds to 450 K, which decreases significantly as the 

temperature is increased to 453 K. The RDF plots for the neat IL obtained without intra- 

molecular polarization (1G) are presented in Figure 6.9. 
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Figure 6.9 Radial distribution function for [sPyr+][BF4
-] with one polarizable groups. 

The overlay of the RDFs calculated with 1 and 3 polarizable groups for the mixture 

are presented in Figure 6.10 and 6.11. The RDF for Anion-Anion using 3 polarizable 

groups shows that the largest peak in the first and second shells correspond to 300 K and 

400 K, respectively. It may correspond to the phase change of Li-doped mixture at lower 

temperature in comparison with the neat IL. In addition, the first peak of this plot (4 Å) is 

eliminated by increasing the temperature using both force fields, however, this peak is 

smaller using 1 polarizable group.  

 

Figure 6.10 Radial distribution function for [10% Li+][BF4
-]-[90% sPyr+][BF4

-] with three 
polarizable groups. 
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Figure 6.11 Radial distribution function for [10% Li+][BF4
-]-[90% sPyr+][BF4

-] with one 
polarizable groups. 

The Li-Li RDF shows two split peaks between 3-4 Å at 400 and 450 K, which 

correspond to the existence of Li-BF4 clusters at these temperatures using 3 polarizable 

groups. The RDF using 1 polarizable group for Li-Li ions, on the other hand, doesn't 

show the split peaks. Instead, there is a shoulder in the first shell at 300 K, which 

vanishes at higher temperatures. Overall, the calculated RDFs for the mixture using 1 

polarizable group are more similar to the neat IL using the 1G parameter set. Further 

studies are under way to investigate the Li ion behavior in this mixture at different 

temperatures. 

6.3.6  Summary of experimental results 

Following the interesting results obtained from the computational simulations 

regarding the observed phase transition around 400-450 K, differential scanning 

calorimetry was performed on the synthesized [sPyr+][BF4
-] by our experimental 
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collaborators at UC-Merced. Figure 6.12 shows a typical DSC run from 360 K to 480 K 

for the BF4 compound. The DSC for the BF4 compound shows that the melting 

temperature is about 448 K, and an enthalpy of fusion of 181 J/g, and a crystallization 

onset of 446 K and an enthalpy of crystallization of 350 J/g. However, examination of the 

DSC for the BF4 compound reveals extra peaks, suggesting the presence of impurities in 

the compound making the enthalpy measurements unreliable. 

 

Figure 6.12 Experimental DSC for [sPyr+][BF4
-] at T = 360-480 K. 

6.4  Conclusions 

The computational characterization of spirocyclic pyrrolidinium tetraflorouborate has 

been explored as an initial step toward its evaluation as an electrolyte in Li-ion batteries. 

AMOEBA parameters have been developed based on QM reference data and employed 

to calculate several thermodynamic properties including 𝜌, ∆Hvap, and D for a range of 

temperatures. Our results suggest a phase change around 450 K, which was subsequently 

confirmed by experimental DSC characterization of the [sPyr+][BF4
-]. 
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The obtained thermogram shows that the melting point is around 448 K. Further 

computational studies on the Li-doped mixture predict that the phase change temperature 

shifts to lower value in the mixture. Our results for the mixture shows higher density and 

slower diffusion than neat IL at all temperature except the temperatures between 400 to 

450 K. 
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CHAPTER 7  DEVELOPMENT OF AN AMOEBA WATER MODEL 
USING GEM DISTRIBUTED MULTIPOLES 

Portions of the text in this chapter were reprinted or adapted with permission from: 

Theor. Chem. Acc., 134, 101:1 (2015). All rights to the work are retained by the authors 

and any reuse requires permission of the authors. 

7.1  Introduction 

Distributed multipoles obtained from the Gaussian electrostatic model (GEM) have 

been previously shown to be amenable for use in the AMOEBA force field.79 GEM 

distributed multipoles (GEM-DM) were determined for several systems including water. 

This previous AMOEBA water model with GEM-DM included only monopoles on the 

hydrogens and multipoles up to quadrupoles on the oxygen. This model showed good 

agreement with experiment for several properties at room temperature, but not at higher 

temperatures. In this contribution, we present the development of an AMOEBA water 

model using GEM-DM with distributed multipoles for each atomic site up to the 

quadrupole level. Quantum mechanical energy decomposition analysis has been 

employed to compare each term of the force field for parametrization. The inclusion of 

higher-order multipoles on hydrogen atoms is shown to provide better agreement with 

experiment on a number of properties including liquid density (ρ), enthalpy of 

vaporization (∆Hvap), heat capacity (Cp), and self-diffusion coefficient (D) for a range of 

temperatures. 
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7.2  Computational methods 

The parametrization details employed in the present study have been described in 

detail in previous papers.76, 79 A brief explanation of the parameter fitting methodology is 

presented in Section 7.2.1, followed by a description of the MD simulation setup in 

Section 7.2.2. 

7.2.1  Parametrization details 

AMOEBA potential including five bonded and three non-bonded terms is shown in 

Eq. 5.1.82 As explained previously,76, 79 the bonded terms are taken directly from 

AMOEBA without any adjustment.78, 205, 216 In the case of the non-bonded terms, 

described by the last three terms of the potential (see Eq. 5.1): UCoul , UPol , and Uvdw , all 

parameters have been fitted to reproduce results based on QM energy decomposition 

analysis (EDA) for the Coulomb and Polarization terms. For the van der Waals term, the 

initial parameters were fitted to reproduce the gas-phase EDA results and subsequently 

refined against two experimental data points. Total intermolecular energies were 

calculated using the counterpoise correction to take into account the basis set 

superposition error (BSSE)228 at the MP2/aug-ccpVTZ level as a function of 

intermolecular separation for the canonical water dimer. The intermolecular polarization 

interactions for each pair were calculated using the restricted variational space (RVS) 

decomposition approach250 at the HF/aug-cc-pVTZ level of theory as implemented in 

GAMESS.230 An in-house FORTRAN90 program that uses ab initio monomer densities 

was employed to calculate the Coulomb intermolecular energies for each dimer. Finally, 
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the van der Waals energies were obtained by subtracting the Coulomb and polarization 

energies from total intermolecular energy for each dimer, as described in Eq. 5.5. 

GEM distributed multipoles (GEM-DM) up to quadrupoles on each atom were 

obtained using the GEM-fit program.79 The Hermite coefficients and associated 

distributed multipoles were calculated by fitting the relaxed one-electron density from a 

single water molecule (in the AMOEBA optimized geometry) calculated at the MP2/aug-

cc-pVTZ level and fitted using the A2231 auxiliary basis set. These distributed multipoles 

are used to determine the intermolecular Coulomb interactions by Eq. 5.2. 

Table 7.1 Comparison of multipoles using A1 and A2 ABSs for water 
ABS Atoms Multipoles   Atoms Multipoles   

A1 Oxygen -0.92473   Hydrogen 0.46237   

  0.00192 -

0.00015 

-

0.27413 
 0.00000 0.00000 0.00000 

  0.49614    0.00000   

  0.00067 -

0.36190 
  0.00000 0.00000  

  0.000182 0.00041 -

0.13424 
 0.00000 0.00000 0.00000 

A2 Oxygen -0.41444   Hydrogen 0.20722   

  0.00000 0.0000 0.01503  -0.00600 0.0000 0.21386 

  0.61476    0.05872   

  0.00000 -

0.49728 
  0.00000 0.04492  

  0.00000 0.0000 -

0.11748 
 0.00216 0.00000 -

0.10365  

In our previous work,79 multipole moments were calculated using the A1 ABS, which 

contains only s-type functions on the hydrogen atoms. This results in only monopole 

components available on the hydrogen atoms. As described above, the results obtained 

with this model showed good agreement with QM reference data for intermolecular 
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interactions and with experimental values for thermodynamic properties at 298 K. 

However, this model was not able to describe the behavior of system at elevated 

temperatures. In the current water model, we have employed the same reference 

electronic density as in our original model, except that the A2 auxiliary fitting basis set 

was employed. This ABS includes higher-order angular momentum functions (l = 2) on 

the hydrogen atoms.79 The old and new multipoles are compared in Table 7.1. 

The polarization term is described by inducible atomic dipoles on each interaction 

(atomic) site. Here, each induced dipole is obtained by 𝜇=,a=67 = 	
  𝛼=	
  𝐸=,a , where α is the 

atomic polarizability, and 𝐸=,a is the external electric field generated by both permanent 

multipoles and induced dipoles. The Tholé damping function75, 136 is employed to avoid 

the “polarization catastrophe” at short range. In our previous study, the Tholé parameter 

was reduced to 0.35 to get a better description of the polarization interactions for the 

canonical water dimer.79 In the current work, the damping factor was set to 0.39 

(consistent with AMOEBA03) and resulted in good agreement for the polarization 

contribution (see below). The last term is the van der Waals potential energy, which is 

described by the buffered Halgren224 pairwise potential (see Eq. 5.3 ) 

The van der Waals parameters for molecules are calculated using the Lorentz–

Berthelot combining rule.82 

𝜎=D = 	
  
L
+
	
  (𝜎== +	
  𝜎DD)                            Eq 7.1 

𝜖=D = 	
   𝜖==𝜖DD                                 Eq 7.2 
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Validation of the new parameters was performed by running a series of molecular 

dynamics simulations for liquid and gas phases and comparing the resulting calculated 

properties with experimental data and other molecular dynamics simulation results. 

7.2.2  MD simulations 

MD simulations were carried out using the AMOEBA/ GEM-DM force field in the 

AMBER12238 simulation package. The MD simulations were performed using a cubic 

simulation cell with periodic boundary conditions. The calculated system included 216 

water molecules (648 atoms). Simulations were carried out in the NPT ensemble with an 

integration time step of 1 fs. Long-range electrostatic effects were computed employing 

the smooth particle mesh Ewald method149, 218, 241 with an 8 Å direct cutoff. Sampling 

trajectories were generated for 4 ns. 

 

 

Figure 7.1 Distance between the center of mass of the oxygen atom in one monomer with 
respect to the hydrogen atom in another monomer in Å 

7.3  Results and discussion 

This section presents the parametrization procedure, and results are obtained for the 

new AMOEBA/GEM-DM water model. Section 7.3.1 presents the results for the 
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parametrization calculations for the intermolecular parameters. This is followed by the 

results for the parametrization of the van der Waals term in Section 7.3.1.2, and the 

validation of the water model by calculating various thermodynamic and transport 

properties as discussed in Section 7.3.2. 

7.3.1  Force field parametrization 

7.3.1.1  Intermolecular interactions 

A series of water dimers was generated by systematically varying the distance 

(increments of 0.1 Å) between the center of mass of the oxygen atom in one monomer 

with respect to the hydrogen atom in another monomer to calculate intermolecular 

interaction energies for the canonical water pair (Figure 7.1). The total interaction energy 

for these dimers in the gas phase was calculated at the MP2(full)/aug-ccpVTZ level of 

theory using BSSE in Gaussian09. For these dimers, the minimum interaction distance is 

located at 2 Å with a corresponding intermolecular interaction energy of -4.71 kcal/mol 

compared with -4.69 using AMOEBA/GEM-DM. The complete intermolecular potential 

energy surface is shown in Figure 7.2.  

 

Figure 7.2 Total interaction energy and vdW interactions for water dimers 
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Next, we performed EDA to compare the intermolecular energies due to Coulomb, 

polarization, and Van der Waals interactions as a function of separation distance with the 

reference ab initio calculations. Intermolecular Coulomb interactions and polarization 

interactions are shown in Figure 7.3. Intermolecular electrostatic interactions are well 

described at medium and long range, and a deviation at short intermolecular distances is 

observed, which is due to penetration errors. The van der Waals parameters were taken 

directly from the AMOEBA force field (Figure 7.2). Reference van der Waals energies 

were calculated as the difference between total intermolecular energies at the MP2 level 

and the Coulomb energies due to permanent multipoles, and the energies due to the 

polarization interaction. 

 

Figure 7.3 Intermolecular Coulomb interactions and polarization interactions for water 
dimers 

7.3.1.2  Van der Waals parameter fitting 

As explained above, we used the original AMOEBA van der Waals parameters as a 

starting point for the parametrization. Our simulation results showed that the liquid 

density and heat of vaporization at 298 K were overestimated (ρ = 1.062 g cm-3, ∆Hvap = 

11.22 kcal mol-1) compared to the experimental data (ρ = 0.997 g cm-3, ∆Hvap = 10.51 kcal 
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mol-1).114 Therefore, we optimized these parameters initially to fit to the QM data in 

Figure 7.2 and subsequently refined them to match the experimental density and heat of 

vaporization at this single temperature.  

 

Table 7.2 Van der Waals parameter, density, and heat of vaporization (a) before and (b) 
after scaling the vdW parameters. 

Atoms R 𝜖 𝜌(g/cm3) ∆Hvap (kcal/mol) 

a     

O 3.405 0.1100 1.062 11.22 

H 2.655 0.0135 

b     

O 3.480 0.1077 1.005 10.53 

H 2.680 0.0113 

 

The fitted van der Waals parameters are shown in Table 7.2. The vdW and total 

intermolecular energy for a series of water dimers show excellent agreement after fitting 

the vdW parameters (Figure 7.4). After scaling of the van der Waals parameters, MD 

simulations were carried out to calculate other thermodynamic and transport properties to 

validate these new parameters. 

7.3.2  Simulation results 

Molecular dynamics simulations were performed to validate the accuracy of the 

newly developed AMOEBA parameters. This section presents the results obtained for the 

calculation of a series of thermodynamic and structural properties including liquid 
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densities, heat of vaporization, heat capacity, diffusion coefficients, and liquid structure 

(from radial distribution functions). 

 

Figure 7.4 Total interaction energy and vdW interactions for water dimers 

7.3.2.1  Liquid volume and density 

The calculated volume is 29.76 Å3 at T = 298 K based on the average density from 

the MD simulations. Using the original van der Waals parameters, the liquid density is 

6.5 % higher than the experimental value at 298 K. In contrast, after the van der Waals 

parameters were scaled, the liquid density decreases to 1.005 g cm-3 which is in good 

agreement with the experimental result, with an error of 0.8 % as shown in Table 7.3. 

Liquid densities calculated with AMOEBA14 and AMOEBA03 at 298.15 K are 0.998 

and 1.000 g cm-3 respectively.141 Comparison of the MD simulation results with 

experiment for liquid densities in the range of 250-370 K is shown in Figure 7.5. Both 

MD simulation results and experiment show a maximum density at 280 K with a value of 

1.007 and 1.000 g cm-3, respectively (Figure 7.5). The mean absolute deviation (MAD) 

from experiment for liquid densities calculated across all temperatures (250-370 K) is 
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0.006 g cm-3 (Table 7.3), which is slightly higher than the MAD value obtained with 

AMOEBA14 (0.001 g cm-3).141 

Table 7.3 Mean absolute deviation (MAD) from experimental liquid-phase properties 
calculated by AMOEBA/GEM-DM and AMOEBA14. 

Property AMOEBA/GEM-DM AMOEBA Units 

𝜌 0.006 0.001 g cm-3 

∆Hvap -0.005 0.103 Kcal mol-1 

Cp 1.54 2.28 Cal mol-1 K-1 

7.3.2.2  Enthalpy of vaporization 

The enthalpy of vaporization is calculated as an estimation of the strength of 

intermolecular interactions for water molecules. We used the Eq 5.6 with the assumption 

of ideal gas behavior to calculate the heat of vaporization. The gas-phase energy for a 

single water molecule at 298 K is calculated using stochastic molecular dynamics 

simulations (Egas = 0.91 kcal mol-1). The calculated enthalpy of vaporization for water 

with GEM-DM is 10.53 kcal mol-1, which is 2 % higher than the experiment value of 

10.51 kcal mol-1 at 298 K. By comparison, the results obtained with iAMOEBA (10.94 

kcal mol-1) and AMOEBA14 (10.63 kcal mol-1) are slightly higher than the experimental 

result.137, 141 The heat of vaporization was also calculated outside of ambient conditions 

and compared to experimental data (Figure 7.5). The MAD from experiment for heat of 

vaporization is 0.005 kcal mol-1 (Table 7.3). 

7.3.2.3  Heat capacity 

The constant-pressure-specific heat capacity is 𝑐@ =
��
�F @

. By using 𝐻 =	
   𝐸010 +

	
   𝑃𝑉 , in which PV is independent of temperature for liquid systems, the heat capacity at 
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constant pressure can be calculated. A correction of 6 kcal mol-1K-1
 has been suggested to 

be deducted from the heat capacity, which is obtained from energy fluctuations of a 

classical flexible model.251 This correction is employed to compensate for the error due to 

the intra- and intermolecular vibrations compared to a quantum oscillator model.252 We 

subtracted the quantum corrections for the high frequency vibrational modes at different 

temperatures137 to calculate the heat capacity in this study. We calculated the heat 

capacity via the differentiation of total energy with respect to temperature. The heat 

capacity at 298 K and 1 atm for water is computed to be 18.75 cal mol-1K-1
 which is 0.75 

cal mol-1K-1
 greater than the experimental value of 18.00 cal mol-1K-1. The values for heat 

capacity calculated with AMOEBA14 and AMOEBA03 are 20.48 and 22.36 cal mol-1K-1, 

respectively.141 In the AMOEBA14 model, the heat capacity has also been used as data 

for the parametrization in ForceBalance.141 In contrast, in this study, we only fitted the 

parameters to reproduce the experimental heat of vaporization and density at 298 K. 

Figure 7.5 shows the experimental and calculated heat capacity in the range of 250-370 K. 

The MAD from experiment for heat capacity calculated across all temperatures is 1.54 

cal mol-1K-1
 using AMOEBA/GEM-DM, which is lower than the MAD value using 

AMOEBA14 (2.28 cal mol-1K-1) (Table 7.3). 

7.3.2.4  Self-diffusion coefficients 

Another liquid property that can be used to validate the quality of the force fields is 

the self-diffusion coefficient. The self-diffusion coefficients were calculated using the 

Einstein relation (equation 5.7).245 The mean square displacement (MSD(t)) in the 

diffusive regime was calculated from the production trajectories (the last 1.5 ns). 
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Figure 7.5 Comparison of simulation result for water density, heat of vaporization, heat 
capacity and diffusion coefficient with experiment between 250 and 370 K 

Self-diffusion coefficients for the water molecules using AMOEBA/GEM-DM at 298 

K are 1.91×10-5 cm2s-1, which is slightly lower than experimental data (2.29×10-5 cm2s-1). 

By comparison, the diffusion coefficients calculated with AMOEBA and iAMOEBA are 

2 ×10-5 cm2s-1 and 2.54	
  ×10-5 cm2s-1 78, 138. The calculated diffusion coefficients for 

temperatures between 250 and 370 K are shown and compared to available experimental 

data in Figure 7.5. The trend in the self-diffusion coefficients is well correlated with the 

enthalpies of vaporization. At higher temperature, the present model predicts faster 

diffusion rate and lower heat of vaporization. 
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7.3.2.5  Intermolecular structure 

The liquid structure of water is usually described by radial distribution functions 

(RDFs). These data can be compared to experimental neutron diffraction data.106 The 

calculated oxygen-oxygen, oxygen–hydrogen, and hydrogen-hydrogen RDFs and 

experimental data are depicted in Figure 7.6. AMOEBA/GEM-DM model is in good 

agreement with experimental data for all RDFs. The first peak for the oxygen-oxygen 

RDF is located at the same distance as experiment (2.8 Å) with a height of 3.12, which is 

slightly higher than experimental value 2.73. The second peak, as well as the first and 

second troughs of the oxygen-oxygen RDF, is in excellent agreement with experiment. 

RDFs for oxygen-hydrogen and hydrogen-hydrogen show similar level of agreement. 

 

Figure 7.6 Radial Distribution function for water 

7.4  Conclusions 

We have presented a new AMOEBA polarizable model for water that uses GEM 

distributed multipoles with higher order multipoles on the oxygen and hydrogen atoms. 

The new parameters improved accuracy for several properties, including ρ, ∆Hvap, Cp and 

D for a range of temperatures compared to our previous parameters. This improvement is 

mainly due to the inclusion of dipoles and quadrupoles on the hydrogen atoms, which 
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provides a better description of polarization and electrostatics. Although we only adjusted 

the van der Waals parameters to reproduce the experimental density and heat of 

vaporization at 298 K, the model shows very good agreement for a series of 

thermodynamic properties including density, heat of vaporization, heat capacity, and 

diffusion coefficient for a range of temperatures. Mean absolute deviations calculated for 

density, heat of vaporization, and heat capacity confirm the excellent agreement between 

experimental data and simulation results in the range of 250–370 K.  
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CHAPTER 8  CONCLUSIONS AND FUTURE WORK 

8.1  Conclusions 

In this work, we performed MD and QM/MM studies on Fe(II)-𝛼-KG dependent 

enzymes (TET2 and AlkB), and developed multipolar/polarizable force field for 

imidazolium- and pyrrolidinium-based ionic liquids and water. A brief introduction of all 

studies systems in this thesis was presented in Chapter one. In Chapter two, we 

extensively studied human TET2 to characterize the source of the substrate preference in 

this enzyme. To this end, we performed MD simulations on wild type and 10 different 

mutants and we uncovered that the scaffold stablished by T1372 and Y1902 is essential 

for iterative oxidation steps. We showed that the mutation of one of these hydrogen 

bonding partners can disrupt the alignment of 5hmC in the active site, resulting in stalling 

oxidation after the formation of 5hmC. 

In Chapter three, we performed ab initio QM/MM studies on the active site of wild 

type TET2 and one of its mutant for further understanding of the mechanism for 5hmC to 

5fC oxidation. We showed that the first step which is the hydrogen abstraction from 

hydroxyl group of 5hmC is the rate-limiting step and the second hydrogen is transferred 

via third transition state as a proton. The large barrier for T1372E mutant confirms our 

prediction from MD simulations that this mutant prevents oxidation after the formation of 

5hmC. We showed that this mechanism is kinetically unfavorable due to the orientation 

of hydroxyl group of 5hmC. These results are also in very good agreement with the 

results obtained for other enzymes of this family such as AlkB.  
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In Chapter 4, we applied two different MD approaches to study the diffusion of O2 

molecules into AlkB active site. Here, we performed explicit ligand sampling and PMF 

calculations to provide a microscopic description of the O2 delivery pathway in AlkB. We 

initially showed that there are two possible tunnels for oxygen diffusion based on the 

static structure of the enzyme using CAVER analysis. Explicit ligand sampling results 

show that oxygen molecules prefer one of these channels to access to the active site. The 

PMF calculations also confirmed the results obtained with explicit ligand sampling 

approach. We also used AMOEBA potential for PMF calculation to investigate the effect 

of multipolar-polarizable force filed on the systems that are highly polarizable. We also 

mutated one single residue (W178) which is experimentally shown to have an important 

role in opening and closing the channel gate. We showed that mutation of this single 

residue can hinder the access of oxygen to the active site or open new pathways for 

oxygen delivery. 

Chapter five focused on the importance of including the multipoles and polarizability 

in force fields to have an accurate description of intermolecular interactions in condensed 

systems. Here, we developed new AMOEBA/GEM-DM force field for imidazolium-

based ionic liquids. We fitted all non-bonded parameters to QM and then performed MD 

simulations to calculate a series of properties. Our results show very good agreement with 

available experimental data. 

In Chapter six, we employed the same approach to develop a multipolar-polarizable 

force field to model a pyrrolidinium-based ionic liquid as an electrolyte in Li ion batteries. 

Here, we performed MD simulations on neat and Li-doped ionic liquids. We modelled 
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our systems with and without intramolecular polarization and showed that it is important 

to include the intramolecular polarization to have an accurate description of non-bonded 

interactions. 

We also developed a new AMOEBA/GEM-DM force field for water. We included 

the higher order multipoles (up to quadrupoles) on both oxygen and hydrogen atoms and 

calculated a series of properties for water at T=250-370 K and compared with 

experimental data. Our model shows very good agreement with experimental data.  

8.2  Future work 

This thesis has demonstrated various computational methods and their application in 

biomolecules and condensed systems studies. We believe this work will encourage more 

scientists to employ computational tools to aid in the understanding of complicated 

systems. 

 Although this work provides details in structure and mechanism of Fe(II)-𝛼-KG 

enzymes, there are still number of challenges that need to be addressed. We studied the 

oxidation of 5hmC substrate to 5fC in TET2 with MD and QM/MM approach, however, 

we didn’t investigate the next iterative oxidation step. One can work on the oxidation of 

5fC to 5caC and 5mC to 5hmC. The oxidation of 5mC to 5hmC by TET can be compared 

with the oxidation of 1meA to understand why 1meA doesn’t go through the iterative 

oxidation steps. Besides, the DNA base flipping effect on the oxidation is another 

challenge that we found in some of the mutants could be another potential source for their 

unique behavior. In addition, the mutation of the residues we introduced to be effective 

on active site can be addressed by both computational and experimental research.  
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Moreover, this work shows the importance of employing multipolar-polarizable force 

fields for both biomolecular systems and ionic liquids. Here, the effect of AMOEBA 

force field on the diffusion of oxygen molecule in AlkB is presented. This approach can 

be used for other polarizable biomolecules to gain an accurate description of their 

behavior.  

The AMOEBA/GEM force field presented here can describe the properties of ionic 

liquids and water very well. However, there are still some shortcomings due to 

penetration effect that one can address them by employing a continuous description of the 

charge density, for instance, Gaussian Electrostatic Model.  
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This work describes the fundamental study of two enzymes of Fe(II)/𝛼-KG super 

family enzymes (TET2 and AlkB) by applying MD and QM/MM approaches, as well as 

the development of multipolar-polarizable force field (AMOEBA/GEM-DM) for 

condensed systems (ionic liquids and water). 

TET2 catalytic activity has been studied extensively to identify the potential source of 

its substrate preference in three iterative oxidation steps. Our MD results along with some 

experimental data show that the wild type TET2 active site is shaped to enable higher 

order oxidation. We showed that the scaffold stablished by Y1902 and T1372 is required 

for iterative oxidation. The mutation of these residues perturbs the alignment of the 

substrate in the active site, resulting in “5hmC-stalling” phenotype in some of the 

mutants. We provided more details on 5hmC to 5fC oxidation mechanism for wild type 

and one of the “5hmC-stallling” mutants (E mutant). We showed that 5hmC oxidizes to 



www.manaraa.com

 
178 

 

 

5fC in the wild type via three steps. The first step is the hydrogen atom abstraction from 

hydroxyl group of 5hmC, while the second hydrogen is transferred from methylene group 

of 5hmC through the third transition state as a proton. Our results suggest that the 

oxidation in E mutant is kinetically unfavorable due to its high barrier energy. Many 

analyses have been performed to qualitatively describe our results and we believed our 

results can be used as a guide for other researchers.  

In addition, two MD approaches (explicit ligand sampling and WHAM) are used to 

study the oxygen molecule diffusion into the active site of AlkB. Our results showed that 

there are two possible channels for oxygen diffusion, however, diffusion through one of 

them is thermodynamically favorable. We also applied multipolar-polarizable force field 

to describe the oxygen diffusion along the preferred tunnel. We showed that the 

polarizable force field can describe the behavior of the highly polarizable systems 

accurately. 

We also developed a new multipolar-polarizable force field (AMOEBA/GEM-DM) 

to calculate the properties of imidazolium- and pyrrolidinium- based ionic liquids and 

water in a range of temperature. Our results agree well with the experimental data. The 

good agreement between our results and experimental data is because our new parameters 

provide an accurate description of non-bonded interactions. We fit all the non-bonded 

parameters against QM. We use the multipoles extracted from fitted electron densities 

(GEM) and we consider both inter- and intra-molecular polarization. We believe this 

method can accurately calculate the properties of condensed systems and can be helpful 

for designing new systems such as electrolytes.  
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